I111E Algorithms \& Data Structures 10. Graph Algorithms (1): Graph Representations, BreadthFirst Search and Depth-First Search

School of Information Science Ryuhei Uehara \& Giovanni Viglietta uehara@jaist.ac.jp \& johnny@jaist.ac.jp 2019-11-20
All materials are available at
http://www.jaist.ac.jp/~uehara/couse/2019/i111e

Graph

- "Vertices" (nodes) are joined by edges (arcs)
- Directed graph: each edge has direction
- Undirected graph: each edge has no direction

Example: railway in Tokyo

Example: relationship between topics

Graph: Notation

- Graph $G=(V, E)$
- V : vertex set, E : edge set
- Vertices: $u, v, \ldots \in V$
- Edges: $e=\{u, v\} \in E$
(undirected)

$$
a=(u, v) \in E
$$

(directed)
Shinjuku/ Ikebukuro

- Weighted variants;
$-w(u), w(e)$
- Distance, cost, time, etc.

Graph: basic notions/notations (1/2)

- Path: sequence of vertices joined by edges
- Simple path: it never visit the same vertex again

- Cycle, closed path: path from v to v
- Connected graph: Every pair of vertices is

joined by a path

Graph: basic notions/notations (2/2)

- Forest: Graph with no cycle (acyclic)
- Tree: Connected acyclic graph

- Complete graph: Every pair of vertices is connected by an edge, denoted by K_{n}, where n is the number of vertices.
- Example: K_{5}

Computational complexity of graph problems

- The number n of vertices, the number m of edges;
- Undirected graph: $m \leqq n(n-1) / 2$
- Directed graph: $m \leqq n(n-1)$
- $\mathrm{m} \in \mathrm{O}\left(n^{2}\right)$
- Every tree has $m=n-1$ edges, so $m \in O(n)$.
- Computational complexity of graph algorithm is described by equations of n and m.

Representative representations of a graph in computer

- Adjacency matrix
- Adjacency list

$$
M=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Representation of a graph: matrix representation (adjacency matrix)

- $(u, v) \in E \Rightarrow M[u, v]=1$
- $(u, v) \notin E \Rightarrow M[u, v]=0$

It is easy to extend edge-weighted graph.

$$
M=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Representation of a graph:

 list representation (adjacency list)- $(u, v) \in E \Leftrightarrow v \in L(u)$
$-L(u)$ is the list of neighbors of u

Adj. matrix v.s. Adj. list

- Space complexity
- Adjacency matrix: $\Theta\left(n^{2}\right)$
- Adjacency list: $\Theta(m \log n)$
- Time complexity of checking if $(u, v) \in E$?
- Adjacency matrix: $\Theta(1)$
- Adjacency list : $\Theta(n)$
Q. How about update graph? (e.g., add/remove vertex/edge)

Search in Graph

Search in Graph

- How can we check all vertices
in a graph systematically, and solve some problem?
- e.g., Do you have a path from A to D?
- Two major (efficient) algorithms:
- Breadth-First Search: A -> B -> C -> D -> F -> E it starts from a vertex v, and visit all (reachable) vertices from the vertices closer to v.
- Depth-First Search: A -> B -> D -> E -> C -> F it starts from a vertex v, and visit every reachable vertex from the current vertex, and back to the last vertex which has unvisited neighbor.

BFS (Breadth-First Search)

- For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and any start point $\mathrm{s} \in \mathrm{V}$, all reachable vertices from s will be visited from s in order of distance from s .
- Outline of method: color all vertices by white, gray, or black as follows;
- White: Unvisited vertex
- Gray: It is visited, but it has unvisited neighbors
- Black: It is already visited, and all neighbors are also visited
- Search is completed when all vertices got black
- Color of each vertex is changed as white \rightarrow gray \rightarrow black

BFS (Breadth-First Search): Program code

$\operatorname{BFS}(V, E, s)\{$

for $v \in V$ do toWhite(v); endfor
toGray(s);

Queue is the best structure!

$\mathrm{Q}=\{\mathrm{s}\}$;
while(Q !=\{\}) \{
$\mathrm{u}=\mathrm{pop}(\mathrm{Q}) ; / / \mathrm{Q} \rightarrow \mathrm{Q}^{\prime}$ where $\mathrm{Q}=\{\mathrm{u}\} \mathrm{UQ}^{\prime}$ for $v \in\{v \in V \mid(v, u) \in E\}$ if isWhite(v) then toGray(v); push(Q,v); endif endfor toBlack(u);

Push v to the right of Q (processed lastly)

BFS (Breadth-First Search): Example

$\mathrm{Q}=\{1\}$

$\mathrm{u}=4$,
visit null
$Q=\{5\}$
black 4

$\mathrm{u}=2$, visit $3,4,5$ $\mathrm{Q}=\{3,4,5\}$ black 2

$$
\begin{aligned}
& \mathrm{u}=3 \\
& \text { visit null } \\
& \mathrm{Q}=\{4,5\} \\
& \text { black } 3
\end{aligned}
$$

Time complexity
Consider from the viewpoints of vertices \& edges

- Each vertex never gets white again after initialization.
- Each vertex gets into Q and gets out from Q at most once
- Each edge is checked at most once
- when one endpoint vertex is taken from Q and its neighbors are checked along edges
- $\therefore O(|V|+|E|)$
$\operatorname{BFS}(V, E, s)\{$ for $v \in V$ do toWhite(v);
endfor
toGray(s);
$\mathrm{Q}=\{\mathrm{s}\}$;
while(Q !=\{\}) \{
u=pop(Q);
for $v \in\{v \in V \mid(v, u) \in E\}$
if isWhite(v) then
toGray(v);
push(Q,v);
endif
endfor
toBlack(u);
\}\}

Application of BFS:

Shortest path problem on graph

Definition of "distance"

- Start vertex v has distance 0
- Except start vertex, each vertex u has distance d+1, where d is the distance of parent of u.
- On BFS, modify that each gray vertex receives its "distance" from black neighbor, then you get (shortest) distance from v to it.

DFS (Depth-First Search)

- For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and start point $\mathrm{s} \in \mathrm{V}$, it follows reachable vertices from s until it reaches a vertex that has no unvisited neighbor, and returns to the last vertex that has unvisited neighbors.
dfs $(V, E, s)\{$
visit(s) // make gray
for $(s, w) \in E$ do
if $\operatorname{notVisited}(w)$ then
$\operatorname{dfs}(V, E, w)$
toBlack(u)
$\}$

Program code is relatively simple, and vertices are put into a stack when dfs makes a recursive call.

DFS: Example

DFS non-recursive version

: We can use stack explicitly to search a tree

$\operatorname{DFS}(V, E, s)\{$

for $v \in V$ do toWhite(v); endfor toGray(s); stack of gray nodes S=\{s\}; while($S!=\{ \}$) \{ u=pop(S); for $v \in\{v \in V \mid(u, v) \in E\}$ if isnotBlack(v) then toGray(v); push(S,v); endif
endfor
toBlack(u);
Pop u from top (last node in gray)

Make u black when it has no unvisited neighbors

Push vinto S on top
 (which will be processed at first)

Example (non-rec. ver.) ${ }^{2}$

$$
S=\{1\}
$$

$\mathrm{u}=2$ visit 5,4,3 $S=\{5,4,3\}$ black 2

$\mathrm{u}=5$
visit null $S=\{ \}$

Application of DFS:

Find connected components in a graph

- For a given (disconnected) graph $G=(V, E)$, divide it into connected graphs $G_{1}=\left(V_{1}, E_{1}\right), \ldots$, $G_{c}=\left(V_{c}, E_{c}\right)$.
- We will give a numbering array cn[] such that

$$
\forall u, v \in V, u \in V_{i} \wedge v \in V_{j} \wedge i \neq j \Rightarrow c n[u] \neq c n[v]
$$

Application of DFS:

Find connected components of a graph

cc(V, $\mathrm{E}, \mathrm{cn})\{$ //cn[|V|]
for $v \in V$ do

$$
\mathrm{cn}[\mathrm{v}]=0 ; / * i n i t i a l i z e * /
$$

endfor
k = 1;
for $v \in V$ do
if $\mathrm{cn}[\mathrm{v}]==0$ then dfs(V, E, v, k, cn); $\mathrm{k}=\mathrm{k}+1$;
endif
endfor
dfs(V, $E, v, k, c n)\{$ cn[v]=k;
for $u \in\{u \mid(v, u) \in E\}$ do if $\mathrm{cn}[\mathrm{u}]==0$ then dfs(V,E, u, $k, c n)$; endif
endfor

BFS v.s. DFS on a graph

- Two major (efficient) algorithms:
- Breadth-First Search:

It is easy to implement by "queue"

- Depth-First Search:

It is easy to implement by "stack"

- Both algorithms are easy to implement to run in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time if you use reasonable data representation and data structure. (This time complexity is optimal since you have to check all input data.)
- Depending on applications, we choose better algorithm.

