
Introduction to
Algorithms and Data Structures

Lecture 12: Sorting (3)
Quick sort, complexity of sort
algorithms, and counting sort

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

QUICK SORT

2

Tony Hoare
1934−

C.A.R. Hoare, “Algorithm 64: Quicksort”.
Communications of the ACM 4 (7): 321 (1961)

Quick sort
• Main property: On average, the fastest sort!
• Outline of quick sort:

– Step 1: Choose an element x (which is called pivot)
– Step 2: Move all elements ≦ x to left

Move all elements ≧ x to right

– Step 3: Sort left and right sequences independently
and recursively

• (When sequence is short enough, sort by any simple sorting)

≦x ≧x

3

Quick sort: Example
Step 1. Choose an element x

• Sort the following array by quick sort:

• Choose x=56, for example;

65 12 46 97 56 33 75 53 21

65 12 46 97 56 33 75 53 21

4

•
• Start from [l, r] = [0,n-1], move l and r,

Swap a[l] and a[r] when a[l] >= x && a[r] < x

65 12 46 97 56 33 75 53 21

≦x ≧x

21 12 46 97 56 33 75 53 65

21 12 46 53 56 33 75 97 65
5

Quick sort: Example
Step 2. Move element w.r.t x:

Quick sort: Example
Step 3. Sort left and right sequences recursively

6

21 12 46 53 33 56 75 97 65

Quick sort Quick sort

21 12 46 53 33

21 12 33 46 53

75 97 65

75 65 97

⋮ ⋮

qsort(int a[], int left, int right){
int i, j, x;
if(right <= left) return;
i = left; j = right; x = a[(i+j)/2];
while(i<=j){

while(a[i]<x) i=i+1;
while(a[j]>x) j=j-1;
if(i<=j){
swap(&a[i], &a[j]); i=i+1; j=j-1;

}
}
qsort(a, left, j); qsort(a, i, right);

}

Quick sort: Program

7
Note: In MIT textbook, there is another implementation.

Quick sort: Time complexity (1/3)
Worst case

8

• When the pivot x is the maximum or minimum
element, we divide

length n → length 1 + length n-1
• This repeats until the longer one becomes 2

• The number of comparisons;

Almost as same as the bubble sort…

Quick sort: Time complexity (2/3)
Average case

9

• Pick up x randomly from n elements.
• For each k, x is the k-th element in n elements

with probability 1/n
• When x is the k-th element;

length n → length k + length n-k

Quick sort: Time complexity (3/3)
Average case

10

• When x is the k-th element;
length n → length k + length n-k

• Total number C(n) of comparisons

Quick quiz

• For the qsort, construct a bad input that gives
the worst case.

• When you fix the way of choice of pivot, there
are some inputs that give the worst case.
However, using randomization, we can avoid
that scenario.

11

COMPUTATIONAL COMPLEXITY OF
THE SORTING PROBLEM

Sort on Comparison model

• Sort on comparison model: Sorting algorithms
that only use the “ordering” of data
– It only uses the property of “a > b, a = b, or a < b”;

in other words, the value of variable is not used.

• Upper bound: O(n log n)
There exist sort algorithms that run in time
proportional to n log n (e.g., merge sort, heap
sort, …).

• Lower bound: Ω(n log n)
For any comparison sort, there exists an input
such that the algorithm runs in time
proportional to n log n.
We consider the lower bound of comparison sorting.

Computational complexity of sort on
comparison model

• Simple example; sort 3 data a, b, c:
First, compare (a,b), (b,c), or (c, a). Without loss of
generality, we assume that (a,b) is compared; then
the next pair is (b,c) or (c,a):

yes a<b

nob<c

a<ca<b<c ≤a<c≤b ≤c≤a<b

yes

yes

no

no

yes a<b

noa<c

b<c≤c≤a<b

a<b<c ≤a<c≤b

no yes

yes no

b<c? a<c?

Computational complexity of
comparison sort: lower bound

When we build a decision tree such that “the longest path from
root to a leaf is shortest,” that length of the longest path gives
us a lower bound of sorting problem.

• What we know from sorting of {a, b, c}:
– For any input, we obtain the solution at most 3

comparison operators.
– There are some input that we have to compare at

least 3 comparison operations.
= maximum length of a path from root to a leaf is 3,

which gives us the lower bound.

Computational complexity of
comparison sort: lower bound

Computational complexity of
comparison sort: lower bound

The case when n data are sorted
– Let k be the length of the longest path in an

optimal decision tree T. Then,
The number of leaves of T ≦ 2k

– Since all possible permutations of n items should
appear as leaves，n! ≦ 2k

– By taking logarithm,

Non-comparison sort: Counting sort
• We need some assumption:

data[i]∈{1,…,k} for 1≦i≦n, k∈O(n)
(For example, scores of many students)

• Using values of data, it sorts in Θ(n) time.

Counting sort
Input: data[i]∈{1,…,k} for 1≦i≦n, k∈O(n)
Idea: Decide the position of element x

– Count the number of element less than x
That number indicates the position of x

Example:
3 7 4 1 2 5

1 2 3 4 5 7

1 2 3 4 5 6 7
0 1 2 3 4 5 5

1 2 3 4 5 6 7
1 1 1 1 1 0 1

Counting sort
Q. When array contains many data of same values?
A. Use 3 arrays a[], b[], c[] as follows;

(a[]: input, b[]: sorted data, c: counter)
– c[a[i]] counts the number of data equal to a[i]

– For each j with 0≦j≦k,
let c’[j] := c[0] + … + c[j-1] + c[j], then
c’[j] indicates the number of data whose value is less
than j

– Copy a[i] to certain b[] according to the value of c’[]

CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[a[j]] = c[a[j]] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 downto 0
b[c[a[j]]-1] = a[j];
c[a[j]] = c[a[j]] - 1;

}

Counting sort: program

Initialize counter c[]

Count the number
of the value in a[i]

Compute c’[] from c[]
In an efficient way!

Copy a[] to b[]

Counting sort: Example
Sort integers (3,6,4,1,3,4,1,4)

• After (2);
c[]=(0,2,0,2,3,0,1)

• After (3);
c[]=(0,2,2,4,7,7,8)

CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[a[j]] = c[a[j]] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 to downto 0
b[c[a[j]]-1] = a[j];
c[a[j]] = c[a[j]] - 1;

}

(2)

(3)a[7]=4 => b[c[4]-1] = b[6], c[4]=6
a[6]=1 => b[c[1]-1] = b[1], c[1]=1
a[5]=4 => b[c[4]-1] = b[5], c[4]=5
a[4]=3 => b[c[3]-1] = b[3], c[3]=3
a[3]=1 => b[c[1]-1] = b[0], c[1]=0
a[2]=4 => b[c[4]-1] = b[4], c[4]=4
a[1]=6 => b[c[6]-1] = b[7], c[6]=7
a[0]=3 => b[c[3]-1] = b[2], c[3]=2

Counting sort: Example
Sort integers (3,6,4,1,3,4,1,4)

• After (2);
c[]=(0,2,0,2,3,0,1)

• After (3);
c[]=(0,2,2,4,7,7,8)

CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[a[j]] = c[a[j]] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 to downto 0
b[c[a[j]]-1] = a[j];
c[a[j]] = c[a[j]] - 1;

}

(2)

(3)a[7]=4 => b[c[4]-1] = b[6], c[4]=6
a[6]=1 => b[c[1]-1] = b[1], c[1]=1
a[5]=4 => b[c[4]-1] = b[5], c[4]=5
a[4]=3 => b[c[3]-1] = b[3], c[3]=3
a[3]=1 => b[c[1]-1] = b[0], c[1]=0
a[2]=4 => b[c[4]-1] = b[4], c[4]=4
a[1]=6 => b[c[6]-1] = b[7], c[6]=7
a[0]=3 => b[c[3]-1] = b[2], c[3]=2

Sort is said to be “stable”
when two variables of the
same value in order after
sorting.

Short (and advanced) exercises
• Among sort algorithms; bubble sort, insertion sort,

heap sort, merge sort, quick sort, counting sort,
– Which are stable?
– Which is not comparison sort?
– Investigate more sort algorithms!

• Investigate “Harmonic number,” which is defined by

(It appears in analysis of lower bound of
comparison sort.)

