Introduction to
 Algorithms and Data Structures

Lecture 11: Sorting (2)
Heap sort and Merge sort

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan. uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

HEAP SORT

Heap sort

- Data structure heap
- Insertion of data: $\Theta(\log n)$ time
- Take the maximum element: $\Theta(\log n)$ time
- How to sort by heap
- Step 1: Put n elements into heap
- Step 2: Repeat to take the maximum element from heap, and copy it to the rightmost element
- Computational Complexity:
- Both of steps 1 and 2 take $\Theta(n \log n)$ time.

Example of heap sort @Step 1 Data $=651246975633755321$

(1)add 65

(2)add 12

(3)add 46

(4)add 97

(5)add 56

(6)add 33

... in the same way, we can add data to heap one by one:

1	2	3	4	5	6	7	8	9
97	65	75	53	56	33	46	12	21

Example of heap sort @Step 2

Example of heap sort @Step 2

array $=$| 97 | 65 | 75 | 53 | 56 | 33 | 46 | 12 | 21 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | | | | | | | | | :

75	65	46	53	56	33	21	12	97

(2) delete $\max (75)$

(Bit) improvement of heap sort

- We can make step 1 to run in $\Theta(n)$ time
- Add all items into the array first
- From bottom to top, exchange the parent/child

(2) Exchange data in each parent/child

John von Neumann
1903-1957

MERGE SORT

Merge sort

- It repeats to merge two sorted lists into one (sorted) list

$126546973356[537521$ lists of length 2

| $12 \quad 2133465356657597$ |
| :--- | :--- | :--- | :--- | one sorted list

- First, it repeats to divide until all lists have length 1, and next, it merges each two of them.

Implementation of merge sort: Typical recursive calls

- The interval that will be sorted: [left, right]
- Find center mid = (left + right)/2

- [left,right] \rightarrow [left,mid], [mid+1,right]
- Perform merge sort for each of them, and merge these sorted lists into one sorted list.

Outline of merge sort

```
MergeSort(int left, int right){
    int mid;
    if(interval [left,right] is short)
    (sort by any other simple sort algorithm);
    else{
        mid = (left+right)/2;
        MergeSort(left, mid);
        MergeSort(mid+1, right);
        Merge [left, mid] and [mid+1, right];
    }
}
We can merge two lists of length \(p\) and \(q\) in \(O(p+q)\) time.
```


Merge sort: the merge process

To merge [left, mid] and [mid+1, right]:

Merge sort: Time complexity

- $T(n)$: Time for merge sort on n data
$-T(n)=2 T(n / 2)+$ "time to merge"

$$
=2 T(n / 2)+c n+d \quad(c, d: \text { some positive constant })
$$

- To simplify, letting $n=2^{k}$ for integer k,

$$
\begin{aligned}
& \mathrm{T}\left(2^{\mathrm{k}}\right)=2 \mathrm{~T}\left(2^{\mathrm{k}-1}\right)+\mathrm{c} 2^{\mathrm{k}}+\mathrm{d} \\
& =2\left(2 T\left(2^{k-2}\right)+c 2^{k-1}+d\right)+c 2^{k}+d \\
& =2^{2} \mathrm{~T}\left(2^{k-2}\right)+2 c 2^{k}+(1+2) d \\
& =2^{2}\left(2 \mathrm{~T}\left(2^{\mathrm{k}-3}\right)+c 2^{\mathrm{k}-2}+\mathrm{d}\right)+2 \mathrm{c} 2^{\mathrm{k}}+(1+2) \mathrm{d} \\
& =2^{3} \mathrm{~T}\left(2^{k-3}\right)+3 c 2^{k}+(1+2+4) \mathrm{d} \\
& =2^{i} T\left(2^{k-i}\right)+i c 2^{k}+\left(1+2+\ldots 2^{i-1}\right) d \\
& =2^{\mathrm{k}} \mathrm{~T}\left(2^{0}\right)+\mathrm{kc} 2^{\mathrm{k}}+\left(1+2+\ldots 2^{\mathrm{k}-1}\right) \mathrm{d} \\
& =b n+c n \log n+(n-1) d \in O(n \log n)
\end{aligned}
$$

Merge sort: Space complexity

- It is easy to implement by using two arrays a[] and b[] .
- Thus space complexity is $\Theta(n)$, or we need n extra array for b[].
- It seems to be difficult to remove this "extra" space.
- On the other hand, we can omit "Write back b[] to a[]" (in the 2 previous slides) when we use a[] and b[] alternately.

Maybe this "extra" space is the reason why merge sort is not used so often...

Monotone sequence merge sort

- Bit improved merge sort from the practical viewpoint.
- It first divides input into monotone sequences and merge them. (Original merge sort does not check the input)
Example: For 65, 12, 46, 97, 56, 33, 75, 53, 21; $65126976633 / 755321$ Divide into monotone sequences

12466597
2133535675
Merge neighbors

122133465356657597
Sorted!

Monotone sequence merge sort: Time complexity

- We can merge in $\mathrm{O}(p+q)$ time to merge two sequences of length p and q
- After merging, the number of sequences becomes in half.
- When the number of monotone sequences is h, the number of recursion is $\log _{2} h$ times.
- One recursion takes $O(n)$ time
$\rightarrow \mathrm{O}(n \log h)$ time in total.
- When data is already sorted: $h=1 \rightarrow O(n)$ time
- The maximum number of monotone sequences is $\mathrm{n} / 2$
$\rightarrow \mathrm{O}(n \log n)$ time in total.

