
Introduction to
Algorithms and Data Structures

Lesson 9: Data structure (3)
Stack, Queue, and Heap

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

Representative data structure

• Stack: The last added item will be took the
first (LIFO: Last in, first out)

• Queue: The first added item will be took the
first (FIFO: first in, first out)

• Heap: The smallest item will be took from the
stored data

Stack

• The structure that the last data will be
popped first (LIFO: Last in, first out)

• Operations
– push: add new data into stack
– pop: take the data from stack

• Pointer
– top: top element in the stack

(where the next item is put)

stack

push 3;
push 4;
push 5;
pop;
pop;
push 6;
pop;

3
4
5
6

 5
 4

 6

top

Implementation of stack by an array
• Store a data: push(x)

• Take the data: pop()

• What kind of errors?
– Overflow: push (x) when top == size(stack)
– Underflow: pop(x) when top == 0

stack[top]=x;
top=top+1;

top=top-1;
return stack[top];

int stack[MAXSIZE];
int top = 0;
void push(int x){

if(top < MAXSIZE){
stack[top] = x; top = top + 1;

} else
printf("STACK overflow");

}
int pop(){

if(top > 0){
top = top - 1; return stack[top];

} else
printf("STACK underflow");

}

Implementation of stack by an array

list_t* push(list_t *top,int x){
list_t *ptr;
ptr=(struct list_t*) malloc(sizeof(list_t));
ptr->data=x; ptr->next=top; return ptr;

}
list_t* pop(list_t *top){

list_t *ptr; ptr=top->next; free(top); return ptr;
}

typedef struct{
int data; struct list_t *next;

}list_t;

Implementation of stack by linked list

• Point: You don’t need to fix the size of stack

It is not necessary if the language has garbage collection

• The first data will be took first
(FIFO: first in, first out)

Array 0 1 2 3 4 MAXSIZE-1
queue 35 29 87

pick head tail Store a data
the data

Data are stored in
from queue[head+1] to queue[tail]

Queue

ｘ：data
queue

head tail

void append(int x){
tail = tail + 1;
queue[tail] = x;

}

配列によるqueueの単純な実装:
データの格納
Add a data into queue

Data taken

head tail

queue

int get(){
head = head + 1;
return queue[head];

}

Simple implementation of queue by array:
take a data

Problem of simple implementation of queue:
Waste area…

• What happens when we
use queue as follows?

void append(int x){
tail = tail + 1;
queue[tail] = x;

}

int get(){
head = head + 1;
return queue[head];

}
int queue[MAX_SIZE];
int head, tail;
void main(){

head=0; tail=0;
append(3); get();
append(4); get();

}

append(3) 3
head

tail
get()append(4) 4

We won’t usewaste

headtailhead tail tail

tail

head

head

void append(int x){
tail = (tail + 1) % MAXSIZE;
queue[tail] = x;

}
int get(){

head = (head + 1) % MAXSIZE;
return queue[head];

}

Solution: Use array cyclic

Return to 0

Return to 0

When it is full;

t h head==tail

When it is empty;

h t head==tail

Problem of queue in cyclic array:
We cannot distinguish between (full) and (empty)

In both cases, we have head==tail.

get()

append

void append(int x){
tail = (tail + 1) % MAXSIZE;
queue[tail] = x;
if(tail == head) printf("Queue Overflow ");

}
int get(int x){

if(tail == head) printf("Queue is empty ");
else {

head = (head + 1) % MAXSIZE;
return queue[head];

}
}

Solution: We define (full) when we
have tail==head when append.

Insertion of a data：From tail of the list: pointer tail
Take a data：From top of the list: pointer head

head

tail
head

tail

x

Take a data Insert a data

Implementation of queue by linked list

Exercise: Make program by yourself!

Heap

• Add/remove data
• Elements can be taken from minimum

(or maximum) in order

Implement of heap (1):
Simple implement by array

An array heap[] and top,
the number of data
• Initialize: top = 0
• Insert data:

heap[top] = x;
top = top + 1;

• Take minimum one:
Find the minimum element
heap[m] in heap[] and
output. Then copy
heap[top-1] to
heap[m], and decrease top
by 1.

0 1 2 m top
heap

Minimum element

m = 0;
for(i=1; i<top; i++)

if(heap[i] < heap[m])
m = i;

x = heap[m];
heap[m] = heap[top-1];
top = top - 1;
return x;

Problem of simple implementation:
Slow for reading data

• Store: O(1)

• Take: O(n)
m = 0;
for(i=1; i<top; i++)

if(heap[i] < heap[m])
m = i;

x = heap[m];
heap[m] = heap[top-1];
top = top - 1;
return x;

heap[top++]=x

root
18 level 0

parent
25 33 level 1

child edge
26 31 35 42 level 2

node
28 29 level 3

leaf

root：node that has no parent
leaf：node that has no child

A tree is called a binary tree
if each node has at most 2 children

“level” is the
distance (# of edges)
from the root

Heap by binary tree

1. Assign 1 to the root.
2. For a node of number i, assign 2×i to the left child and assign

2×i+1 to the right child:

3. No nodes assigned by the number greater than n.
4. For each edge, parent stores data smaller than one in child.

i

2×i 2×i+1

Each node has a unique path from the root, and its length is O(log n).

Property of binary tree for heap

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 22 9

1 2 3 4 5 6 7 8 9
10 13 11 15 14 12 18 21 22

We can use an array, instead of linked list!

Example of a heap by binary tree

1. Assign 1 to the root.
2. For a node of number i, assign

2×i to the left child and assign
2×i+1 to the right child.

3. No nodes assigned by the
number greater than n.

4. For each edge, parent stores
data smaller than one in child.

(1) temporally, add data to node n+1 (n+1st element in array)
(2) traverse to the root step by step, and

if parent > child then swap parent and child

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 9 22 8 10

8 1

10 2 11 3

15 4 13 5 12 6 18 7

21 8 9 22 14 10

That is, from n+1st node to the root, the data are in order. This
algorithm does not occur any problem with any other part of tree.

Add a data to heap

5 minute quiz:
Why does this
algorithm has
consistency?

void pushHeap(int x){
int i, j;
if(++n >= MAXSIZE)

stop("Heap Overflow");
else{

heap[n] = x;
i=n; j=i/2;
while(j>0 && x < heap[j]){

heap[i] = heap[j];
i=j; j=i/2;

}
heap[i] = x;

}
}

Program for adding a data to heap
10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 9 22 8 10

8 1

10 2 11 3

15 4 13 5 12 6 18 7

21 8 9 22 14 10

(1) Take the minimum data at the root
(2) Copy the last item (of number n) to the root
(3) Traverse from the root to a leaf as follows

For each pair of two children, choose the smaller one,
and exchange parent and child if child is smaller than parent.

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 22 9

11 1

13 2 12 3

15 4 14 5 22 6 18 7

21 8

Minimum data

Heap: Take the minimum item

int* deleteMin(int *heap, int n){
int x, i, j, t;
if(n == 0) stop("Heap Underflow");
else{

heap[1]=heap[n--];
for(i=1;i*2<=n;i=j){

j=i*2;
if(j+1<=n && heap[j]>heap[j+1]) j=j+1;
if(heap[i]<=heap[j]) break;
else {

t=heap[i]; heap[i]=heap[j]; heap[j]=t;
}

}}
return heap;}

Program for removing the smallest
item from heap

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 22 9

Node i has child &&
right child may be smaller

Smaller than child

Swap parent (i) and child (j)

11 1

13 2 12 3

15 4 14 5 22 6 18 7

21 8

Time complexity of binary heap

• Let n be the size of heap
–Addition: O(log n)
–Removal: O(log n)

• Each operation runs in time
proportional to the depth of the heap

• The depth of heap is O(log n)

