Introduction to
Algorithms and Data Structures

Lesson 9: Data structure (3)
Stack, Queue, and Heap

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Representative data structure

e Stack: The last added item will be took the
first (LIFO: Last in, first out)

* Queue: The first added item will be took the
first (FIFO: first in, first out)

 Heap: The smallest item will be took from the
stored data

Stack

 The structure that the last data will be
popped first (LIFO: Last in, first out)

* Operations
— push: add new data into stack

stack

— pop: take the data from stack
* Pointer

— top: top element in the stack

(where the next item is put)
top

Implementation of stack by an array

e Store a data: push(x)

stack[top]=x;
top=top+1;

e Take the data: pop()

top=top-1;
return stack[top];

e What kind of errors?

— Overflow: push (x) when top == size(stack)
— Underflow: pop(x) when top ==

Implementation of stack by an array

int stack[MAXSIZE];
int top = ©;
void push(int x){
if(top < MAXSIZE){
stack[top] = x; top = top + 1;
} else
printf("STACK overflow");

}
int pop(){
if(top > 9){
top = top - 1; return stack[top];
} else
printf("STACK underflow");

Implementation of stack by linked list

 Point: You don’t need to fix the size of stack

typedef struct{
int data; struct list t *next;
}list t;

list t* push(list t *top,int x){
list t *ptr;
ptr=(struct list t*) malloc(sizeof(list t));
ptr->data=x; ptr->next=top; return ptr;
}
list t* pop(list t *top){
list t *ptr; ptr=top->next; free(top); return ptr;

¥

Queue

 The first data will be took first
(FIFO: first in, first out)

Array 01 2 3 4 ... MAXSIZE-1

queue F

pick head tail Store a data
the data

Data are stored in
from queue[head+1] to queue[tail]

Add a data into queue

U 0data

queue I

} A
head tail

void append(int x){
tail = tail + 1;
queue[tail] = x;

¥

Simple implementation of queue by array:
take a data

Data taken
queue ﬁ

} }
head tail

int get(){
head = head + 1;
return queue[head];

¥

Problem of simple implementation of queue:
Waste area...

* What happens when we int get(){

use queue as follows? head = head + 1;
return queue[head];
}
int queue[MAX SIZE];
inF heaq, tail; void append(int x){
void main(){ tail = tail + 1;
head=0; tail=0; queue[tail] = x;

append(3); get();
append(4); get();
}

head

gppénd(3)
tail

Solution: Use array cyclic

N [|=[[|- [

head tail head tail head i tail

tail head

void append(int x){
tail = (tail + 1) % MAXSIZE;
queue[tail] = x;

}

int get(){ neturntod
head = (head + 1) % MAXSIZE;
return queue[head];

¥

Problem of queue in cyclic array:
We cannot distinguish between (full) and (empty)

When it is full;
tT Th append head==tail
When it is empty;
| —
hT Tt get() head=-tail

In both cases, we have head==tail.

Solution: We define (full) when we
have tail==head when append.

void append(int x){
tail = (tail + 1) % MAXSIZE;
queue[tail] = x;
if(tail == head) printf("Queue Overflow ");
}
int get(int x){
if(tail == head) printf("Queue is empty ");
else {
head = (head + 1) % MAXSIZE;
return queue[head];

}
}

Implementation of queue by linked list

Insertion of a data: From tail of the list: pointer tail
Take a data: From top of the list: pointer head

head
tail
head —
><_+l a # #] X
Take a data tail Insert a data

Exercise: Make program by yourself!

Heap

 Add/remove data
 Elements can be taken from minimum

(or maximum) in order

a. How can we implement?

Implement of heap (1):
Simple impleme*

m = 0;

An array heap[] and top, for(i=1; i<top; i++)
the number of data if(heap[i] < heap[m])
* Initialize: top = © m= i;
* Insert data: X = heap[m];

heap[top] = X; heap[m] = heap[top-1];

top = top + 1; top = top - 1;
 Take minimum one:

return Xx;
Find the minimum element
heap[m] in heap[] and
output. Then copy
heap[top-1] to 01 2 m ton
heap[m], and decrease top heap F

by 1.

Minimum element

Problem of simple implementation:
Slow for reading data

e Store: O(1)
heap[top++]=X

* Take: O(n)

m = 0;

for(i=1; i<top; i++)
if(heap[i] < heap[m])

m= 1;

X = heap[m];

heap[m] = heap[top-1];

top = top - 1;

return X;

Heap by binary tree

“level” 1s the
distance (# of edges)
from the root

root:node that has no parent
leaf: node that has no child

A tree is called a binary tree
if each node has at most 2 children

w

4.

Property of binary tree for heap

Assign 1 to the root.
For a node of number i, assign 2 X i to the left child and assign

2 X i+1 to the right child: :

2 X1 2 X1+l

No nodes assigned by the number greater than n.
For each edge, parent stores data smaller than one in child.

The maximum level of heap: ceil(log, (n+1)-1)

Each node has a unique path from the root, and its length 1s O(log n).

Example of a heap by binary tree

1. Assign 1 to the root.
/.1\ 2. For a node of number i, assign
) 2 } 3 2 X i to the left child and assign
/N AN 2 X i+1 to the right child.
/‘ ¢ @5@s ® 3. No nodes assigned by the

@ s 9 number greater than n.
4. For each edge, parent stores
data smaller than one in child.

We can use an array, instead of linked list!

ollalisl w2l 212

Add a data to heap

(1) temporally, add data to node n+1 (n+15t element in array)
(2) traverse to the root step by step, and
if parent > child then swap parent and child

A
/.\2 /.<‘ i algorithm has

/‘4 :5.6 consistency?
‘89\‘ 10 =P / \

/\"5.6

@:s @@ w

That is, from n+1%t node to the root, the data are in order. This
algorithm does not occur any problem with any other part of tree.

Program for adding a data to heap

void pushHeap(int x){
int 1, j;
if(++n >= MAXSIZE)

stop("Heap Overflow"):
else{

heap[n] = X; o O

i=n; j=1i/2;

while(j>0 && x < heap[j]){
heap[i] = heap[j];
i=j; j=1/2;

Heap: Take the minimum item

(1) Take the minimum data at the root

(2) Copy the last item (of number n) to the root

(3) Traverse from the root to a leaf as follows
For each pair of two children, choose the smaller one,
and exchange parent and child if child is smaller than parent.

.1\/’Minimum data
(B /‘3

& 8@ 'Y ‘\

o @ = s

04 Q @ s
‘8

int x, 1, j, t;
if(n == @) stop("
else{ O
heap[1l]=heap[n--];
for(i=1;i*2<=n;i=j){
J=1%*2;
ifﬂj+1<=n && hg
if(heap[i]<=
else { (
t=heap[i]f?\~

¥

H
return heap;} Cﬁ)

Time complexity of binary heap

* Let n be the size of heap
— Addition: O(log n)
—Removal: O(log n)

* Each operation runs in time
proportional to the depth of the heap
* The depth of heap is O(log n)

