Introduction to
Algorithms and Data Structures

Lesson 8: Data Structure (2)
Operations on linked lists

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Example of
Data structures X Algorithms

Usually, we can choose some data structure, €.g.,

* array

* linked list

for the implementation of the same algorithm.

Efficiency depends on “data structure” vs “basic

operations” you will use on the data.

e When we “add” and “remove” data, linked list 1s much
better than array, and tree structure 1s much better than
linked list (I’ll explain, say, at the last lesson?)

We will show some simple examples

Sequential search by linked list

* Find x in the linked list from the top of linked
Ist

— It contains x =» address of the record

— It doesn’t contain x = NULL

typedef struct{ -
double data; Satisfied:

struct list t *next; [@

E") Elzzgz’ p==NULL or p->data == x it exits

while(p != NULL && p->data != x)

P = p->next; s

return p; IS this correct?

Binary search method

e Search, divide into halves, and repeat to find

M Greater than 33 Filog) 7

2 5 6 19 33 | 54 67 72 78

2 5 6 19 54 67 72 78

Ihm Greater than 72

— Key issue: Divide at the center point.

Binary search tree:
data structure of binary search

0 1 2 3 45 6 7 8 91
B 10 12 18 28 30 38 40 45 47 49 5

3'#!' Iéﬁil

oo W
| | —l—l |
M mmeE | e

 When data size is fixed, we can compute the
central positions beforehand

11 12 13 14

0
3 67 70 75 82

Property of binary search tree

Left subtree: Right subtree:
All element isdess than4 Allelements aré greater than 45

* |In general, for a node n,

— All elements in right subtree are greater than (or equal
to) n

— All elements in left subtree are less than (or equal to) n

Search in binary search tree

typedef struct{

BSThode *root, *v; m‘,‘

x=/*some value*/; int data;
= root: struct BSTnode
while(v){ *1lson, *rson;\\\
if(v->data == x) /}BSTnode;

break;
if(v->data > x)
= v->1son;
else
V = V->rson;

Left if small

¥
i |
Right'if large Each record has two

pointers to left child
and right child.

¥

return v;

