Introduction to Algorithms and Data Structures

Lesson 6: Foundation of Algorithms (3) Big-O notation

Professor Ryuhei Uehara, School of Information Science, JAIST, Japan. <u>uehara@jaist.ac.jp</u>

http://www.jaist.ac.jp/~uehara

Big-O notation

- Big-O notation (Bachmann-Landau notation)
 - Big-O notation: O(f(n))
 - Big- Ω notation: $\Omega(f(n))$
 - $-\Theta$ notation: $\Theta(f(n))$

Edmund Landau

1877-1938

• We have three more, small-o notations, but we don't use in this lesson.

Asymptotical Complexity

- It indicates the behavior of complexity when the size *n* of input grows quite huge.
- We'd like to check how complexity grows (<u>independent</u> to <u>machine model</u> and/or programming techniques)→
 - It is enough to consider main/major term
 - Coefficients are not essential from this viewpoint
- Three types:
 - Upper bound
 - Lower bound
 - Both of them

Big-O notation: O(f(n)) Upper bound of complexity

- $O(f(n)) = \{g(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0, g(n) \le cf(n)\}$
 - There exist two positive constants $\,c$ and $\,n_0$ such that $\,g(n) \leq cf(n)\,$ for every $\,n \geq n_0\,$
 - Sometimes g(n) = O(f(n)) is used as $g(n) \in O(f(n))$
- Example of f(n): $\log_2 n$, n^2 , 2^n , ...

4

Big-Ω notation: Ω(f(n)) Lower bound of complexity

- $\Omega(f(n)) = \{g(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0, cf(n) \le g(n)\}$
 - There exist two positive constants c and n_0 such that $cf(n) \leq g(n)$ for every $n \geq n_0$

Θ notation: $\Theta(f(n))$

- $\Theta(f(n)) = \{g(n) \mid \exists c_1, c_2 > 0, \exists n_0, \forall n \ge n_0, c_1 f(n) \le g(n) \le c_2 f(n)\}$
 - There exist three positive constants c_1, c_2, n_0 such that $c_1 f(n) \le g(n) \le c_2 f(n)$ for every $n \ge n_0$

Short exercise

- Choose functions in O(n), O(2ⁿ)
 -0.1n, 5n¹⁰⁰⁰, 2.1ⁿ, 2ⁿ⁺³
- Prove $23n^2 + n + 2018$ O(n²)

- <u>Disprove 23n³+n+2018</u> $O(n^2)$
- Prove $O(\log_2 n) = O(\log_{10} n)$