Introduction to
 Algorithms and Data Structures

Lesson 6: Foundation of Algorithms (3) Big-O notation

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan. uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

Big-O notation

- Big-O notation (Bachmann-Landau notation)
- Big-O notation: O(f(n))
- Big- Ω notation: $\Omega(f(n))$
- Θ notation: $\Theta(f(n))$

Paul Bachmann 1837-1920

- We have three more, small-o notations, but we don't use in this lesson.

Asymptotical Complexity

- It indicates the behavior of complexity when the size n of input grows quite huge.
- We'd like to check how complexity grows (independent to machine model and/or programming techniques) \rightarrow
- It is enough to consider main/major term
- Coefficients are not essential from this viewpoint
- Three types:
- Upper bound
- Lower bound
- Both of them

Big-O notation: O(f(n)) Upper bound of complexity

- $\mathrm{O}(\mathrm{f}(\mathrm{n}))=\left\{\mathrm{g}(\mathrm{n}) \mid \exists \mathrm{c}>0, \exists \mathfrak{n}_{0}, \forall \mathrm{n} \geq \mathfrak{n}_{0}, \mathrm{~g}(\mathrm{n}) \leq \mathrm{cf}(\mathrm{n})\right\}$
- There exist two positive constants c and n_{0} such that $g(n) \leq c f(n)$ for every $n \geq n_{0}$
- Sometimes $g(n)=O(f(n))$ is used as $g(n) \in O(f(n))$
- Example of $f(n): \log _{2} n, n^{2}, 2^{n}, \ldots$

Big- Ω notation: $\Omega(\mathrm{f}(\mathrm{n})$) Lower bound of complexity

- $\Omega(\mathrm{f}(\mathrm{n}))=\left\{\mathrm{g}(\mathrm{n}) \mid \exists \mathrm{c}>0, \exists \mathfrak{n}_{0}, \forall \mathrm{n} \geq \mathrm{n}_{0}, \mathrm{cf}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})\right\}$
- There exist two positive constants c and n_{0} such that $\operatorname{cf}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})$ for every $\mathrm{n} \geq \mathrm{n}_{0}$

Θ notation: $\Theta(f(n))$

- $\Theta(f(n))=\left\{g(n) \mid \exists c_{1}, c_{2}>0, \exists \mathfrak{n}_{0}, \forall n \geq n_{0}\right.$,

$$
\left.c_{1} f(n) \leq g(n) \leq c_{2} f(n)\right\}
$$

- There exist three positive constants c_{1}, c_{2}, n_{0} such that $c_{1} f(n) \leq g(n) \leq c_{2} f(n)$ for every $n \geq n_{0}$

Short exercise

- Choose functions in $\mathrm{O}(\mathrm{n}), \mathrm{O}\left(2^{\mathrm{n}}\right)$
$-0.1 \mathrm{n}, 5 \mathrm{n}^{1000}, 2.1^{\mathrm{n}}, 2^{\mathrm{n}+3}$
- Prove $23 \mathrm{n}^{2}+\mathrm{n}+2018 \in \mathrm{O}\left(\mathrm{n}^{2}\right)$
- Disprove $23 n^{3}+n+2018 \in O\left(n^{2}\right)$
- Prove $O\left(\log _{2} n\right)=O\left(\log _{10} n\right)$

