# Introduction to <br> Algorithms and Data Structures 

## Lesson 4: Searching (2) Block search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan. uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

## Search Problem

- Problem: $S$ is a given set of data. For any given data $x$, determine efficiently if $S$ contains $x$ or not.
- Efficiency: Estimate the time complexity by $n=$ $|S|$, the size of the set $S$
- In this problem, "checking every data in S " is enough, and this gives us an upper bound $O(n)$ in the worst case.

Roughly, "the running time is proportional to $n$."

## Data structure 2

## Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- This is something like dictionary and address book...

Q: Do you use sequential search algorithm when you check dictionary?


## Algorithm 2: m-block method

## Idea off m-block method

(0) Divide the array into $m$ blocks $B_{0}, B_{1}, \ldots, B_{m-1}$
(1) Check the biggest item in each block, and find the block $\mathrm{B}_{\mathrm{j}}$ that can contain x
(2) Perform sequential search in $B_{j}$

## Algorithm 2: m-block method

## Idea off m-block method

(0) Divide the array into $m$ blocks $\mathrm{B}_{0}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}-1}$
(1) Check the biggest item in each block, and find the block $\mathrm{B}_{\mathrm{j}}$ that can contain x
(2) Perform sequential search in $B_{i}$

Simple implementation: divide into the blocks of same size except the last one.


- Each block has length k , where $\mathrm{k}={ }_{\mathrm{r}}^{\mathrm{n}} / \mathrm{m}{ }^{\top}$
- Block $B_{j}$ has items from $s[j k]$ to $s[(j+1) k-1]: B_{j}=[j k,(j+1) k-1]$


## Algorithm 2: m-block method

## Idea of m-block method

(0) Divide the array into $m$ blocks $B_{0}, B_{1}, \ldots, B_{m-1}$
(1) Check the biggest item in each block, and find the block $\mathrm{B}_{\mathrm{j}}$ that can contain x
(2) Perform sequential search in $B_{i}$

$$
\begin{aligned}
& j=0 \text {; } \\
& \text { while }(j<=m-2) \\
& \text { if } x<=s[(j+1) * k-1] \text { then exit from loop } \\
& \text { else } j=j+1 \text {; }
\end{aligned}
$$

If the program exits from the loop, the variable $j$ indicates the index of the block, and j indicates the last one otherwise.

## Algorithm 2: m-block method

## Idea off m-block method

(0) Divide the array into $m$ blocks $B_{0}, B_{1}, \ldots, B_{m-1}$
(1) Check the biggest item in each block, and find the block $B_{j}$ that can contain $x$
(2) Perform sequential search in $B_{j}$

```
i=j*k; t = min{ (j+1)*k-1, n-1 };
while( i < t )
    if x\geqq s[i] then exit from the loop;
    else i=i+1; //next item in the block
if x == s[i] then return i and halt;
else return -1 and halt.
```


## Example and time complexity



- \# of comparisons $\leqq$ \# of blocks + length of block = m + n/m
- What the value of $m$ that minimize $m+n / m$ ?
- Let $f(m)=m+n / m$, and take the differential for $m$
$-f^{\prime}(m)=1-n / m^{2}=0 \rightarrow m=V n$
- When $m=V n$, \# of comparisons $\leqq V n+n / V n=2 V n$
- Time complexity: $\mathrm{O}(\mathrm{Vn})$

For example, when $n=1000000$,
Linear search takes n/2=500000 comparisons, but Block search takes $\sqrt{ } 1000000=1000$ comparisons!!

## Algorithm 3: Double m-block method

 In the m-block method, we use sequential search in each block.$\longrightarrow$ We can use m-block method again in the block!!
Recursive call: basic and strong idea


Idea of double m-block method
Divide search area into $m$ blocks, and repeat the same process for the block that contains $x$, and repeat again and again up to the block has length at most some constant N
double-m-block-search(int left, int righ Some constant Length $L=$ right - left +1
if $L>L \min$ then Length of the block
$\mathrm{k}=\mathrm{L} / \mathrm{m}$;
for $j=0$ to $m-2$ do if $x \leqq s[$ left $+(j+1) k-1]$ then exit the loop;
endfor
$f=$ left $+j k ; \quad t=\min \{l e f t+(j+1) k-1, n-1\} ;$
double-m-block-search $(f, t)$; else

Recursive call
i = left;
while (i < right)
if $x \leqq s[i]$ then exit the loop else $i=i+1$;
if $x==s[i]$ then return $i$;
else return -1 ;
endif
sequential search if the interval is short enough

## Example: find 20 ( $x=20$ ) for block size 3



## Analysis of time complexity

- Length of search space
- Let $n_{i}$ be the length after the $i$-th call

$$
\begin{aligned}
n_{1} & =\left\lceil\frac{n}{m}\right\rceil \leq \frac{n}{m}+1 \\
n_{2} & =\left\lceil\frac{n_{1}}{m}\right\rceil \leq \frac{n}{m^{2}}+\frac{1}{m}+1 \\
& \ldots \\
n_{i} & \leq \frac{n}{m^{i}}+\sum_{j=0}^{i-1} \frac{1}{m^{j}} \leq \frac{n}{m^{i}}+2
\end{aligned}
$$

## Analysis of time complexity

- The length $n_{i}$ after the $i$-th recursive call:

$$
n_{i} \leqq n / m^{i}+2
$$

- How many recursive calls made?
$n_{i} \leq \operatorname{Lmin} \Longleftarrow \operatorname{Lmin} \geq \frac{n}{\mathfrak{m}^{i}}+2 \Longleftrightarrow \mathfrak{i} \geq \log _{\mathfrak{m}} \frac{n}{\operatorname{Lmin}-2}$
- Each recursive call make at most m-1 comparisons, so the total number of comparisons is $\leq(m-1) \log _{m} \frac{n}{\text { Lmin }-2}+$ Lmin
- The time complexity is $\mathrm{O}(\log n)$


## Analysis of time complexity: The best value of $m$

- $T(n, m)=(m-1) \log _{m} \frac{n}{\operatorname{Lmin}-2}+\operatorname{Lmin}$

$$
=\frac{\mathfrak{m}-1}{\log _{2} \mathfrak{m}} \log _{2} \frac{\mathrm{n}}{\operatorname{Lmin}-2}+\operatorname{Lmin}
$$

- To make $T(n, m)$ the minimum, smaller $m$ is better because $m-1$ grows faster than $\log _{2} m$ (which will be checked in the big-O notation).
- Therefore, $\mathrm{m}=2$ is the optimal

