Introduction to Algorithms and Data Structures

Lesson 3: Searching (1)
Sequential search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

How to tackle the problem

- Consider data structure and how to store data
- Data are in an array in any ordering
- Data are in an array in increasing order
- Search algorithm: The way of searching
- Sequential search
- m-block method
- Double m-block method
- Binary search
- Analysis of efficiency
- Big-O notation

Search Problem

- Problem: S is a given set of data. For any given data x, determine efficiently if S contains x or not.
- Efficiency: Estimate the time complexity by $n=$ $|S|$, the size of the set S
- In this problem, "checking every data in S " is enough, and this gives us an upper bound $O(n)$ in the worst case.

Roughly, "the running time is proportional to n."

Data structure 1

Data are stored in arbitrary ordering

- Each element in the set S is stored in an array s from $s[0]$ to $s[n-1]$ in any arbitrary ordering.

$s[]=$| 37 | 12 | 25 | 9 | 87 | 33 | 65 | 3 | 29 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sequential search

- Input: any natural number x
- Output:
- If there is i such that $\mathrm{s}[\mathrm{i}]==x$, output i
- Otherwise, output -1 (for simplicity)

```
for (i=0; i<n; ++i)
    if(x==s[i]) return i;
return -1;
```

In the worst case, we need n comparisons.
Thus, the running time is proportional to n.
$\rightarrow \mathrm{O}(n)$ time algorithm

Precise time complexity of sequential search

- At most $3 n+2$ steps

Initialization of i takes 1 operation

For the number of loops $\leqq n$, comparison $\times 2$ (==, <) increment $\times 1$ (++)

Return takes 1 operation

Programming tips 1: simplify by using "sentinel"

Before searching, push x itself at the end of the array; Then you definitely have $x=s[i]$ for some $0<i<=n$ So you do not need the check $\mathrm{i}<\mathrm{n}$ any more.

Analysis of the number of comparisons

- The best case: 1 time
- In the case of $s[0]==x$
- The worst case: n times
$-x$ is not in $s[0] \ldots$...s[n-1]
- The average case: $\sum_{i=1}^{n+1} \frac{i}{n}=\frac{n+2}{2}$

$$
\begin{aligned}
& s[n]=x ; \\
& i=0 ; \\
& \text { while }(x!=s[i]) \\
& i=1+1 ; \\
& i f(i<n) \\
& \quad \text { return } i ; \\
& \text { else } \\
& \quad \text { return }-1 ;
\end{aligned}
$$

- The expected value of \# of comparisons
- The i-th element is compared with probability $1 / n$
- The number of comparisons when x is equal to the i-th element is i.

Randomized algorithm

Flip a fair coin, and

- "H": search from s[0] forwardly
- "T": search from $s[n-1]$ backwardly

Intuition:
For any (sometimes fixed or unbalanced) input, the average case occurs on average.

RANDOMIZED ALGORITHM

The behavior depends on random numbers.
The worst case occurs with low probability.

Data structure 2
 Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Q: Any improvement in sequential algorithm?

```
s[n]=x;
i = 0;
while(x!=s[i])
We can stop when s[i] is
greater than x
x!=s[i] >> x>s[i]
    i = i+1;
if(i < n) return i;
else return -1;
```


Data structure 2
 Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Q: Any improvement in sequential algorithm?

```
s[n]=x;
i = 0;
while(s[i]<x)
```

We can stop when s[i] is
greater than x
$x!=s[i] \Rightarrow x>s[i]$

```
    i = i+1;
if(i < n) return i;
else return -1;
```


Data structure 2
 Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Q: Any improvement in sequential algorithm?

$$
\begin{aligned}
& s[n]=x ; \\
& i=0 ; \\
& \text { while }(s[i]<x) \\
& i=1+1 ; \\
& \text { if(i< n) return i; } \\
& \text { else return -1; }
\end{aligned}
$$

$$
\text { We can stop when } s[i] \text { is }
$$

$$
\text { greater than } x
$$

$$
x!=s[i] \Rightarrow x>s[i]
$$

```
It may stop even
It may stop even
if i<n
i<n }->s[i]==
```


Data structure 2
 Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Q: Any improvement in sequential algorithm?

$$
\begin{array}{ll}
s[n]=x ; & \text { We can stop when } s[i] \text { is } \\
i=0 ; & \text { greater than } x \\
\text { while }(s[i]<x) & x!=s[i] \Rightarrow x>s[i] \\
i=i+1 ; & \text { It may stop even } \\
\text { if }(s[i]==x) \text { return } i ; & \begin{array}{l}
\text { if } i<n \\
\text { else } \quad \text { return }-1 ;
\end{array} \\
& \text { i<n } \rightarrow s[i]=x
\end{array}
$$

Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
When x is not in
```

- $\mathrm{Q}: \mathrm{A}_{\mathrm{s}}$ s[], it returns n equential algorithm? $\mathrm{s}[\mathrm{n}]=\mathrm{x} \rightarrow \mathrm{s}[\mathrm{n}]=\mathrm{x}+1$

We can stop when $s[i]$ is
greater than x
$x!=s[i] \Rightarrow x>s[i]$
i = i+1;
if(s[i]==x) return i;
return -1;

It may stop even if i<n $\mathrm{i}<\mathrm{n} \rightarrow \mathrm{s}[\mathrm{i}]==\mathrm{x}$

Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
When x is not in
```

- $\mathrm{Q}: \mathrm{A}_{\mathrm{s}}$ s[], it returns n equential algorithm? $\mathrm{s}[\mathrm{n}]=\mathrm{x} \rightarrow \mathrm{s}[\mathrm{n}]=\mathrm{x}+1$

We can stop when $s[i]$ is
greater than x
$x!=s[i] \Rightarrow x>s[i]$
i = i+1;
if(s[i]==x) return i;
return -1;

It may stop even if i<n $i<n \rightarrow s[i]==x$

Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
When x is not in
```

- $\mathrm{Q}: \mathrm{A}_{\mathrm{s}}$ s[], it returns n equential algorithm? $\mathrm{s}[\mathrm{n}]=\mathrm{x} \rightarrow \mathrm{s}[\mathrm{n}]=\mathrm{x}+1$

We can stop when $s[i]$ is
greater than x
$x!=s[i] \Rightarrow x>s[i]$
i = i+1;
if(s[i]==x) return i;
return -1;

It may stop even if i<n $\mathrm{i}<\mathrm{n} \rightarrow \mathrm{s}[\mathrm{i}]==\mathrm{x}$

Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Exit from loop when: $s[i] \geqq x$
- Check after loop: s[i]==x
- Sentinel: greater than x, e.g., $x+1$

$$
\begin{aligned}
& s[n]=x+1 ; \\
& i=0 ; \\
& \text { while }(s[i]<x) \\
& i=i+1 ; \\
& i f(s[i]==x) \\
& \text { return } i ; \\
& \text { else } \quad \text { return }-1 ;
\end{aligned}
$$

Q. Improve of comparison?
A. Average is better. But the same in the worst case

