
Introduction to
Algorithms and Data Structures

Lesson 2: Foundation of Algorithms (2)
Simple Basic Algorithms

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

Algorithm?
• Algorithm: abstract description of how to solve a

problem (by computer)
– It returns correct answer for any input
– It halts for any input
– Description is not ambiguity

• (operations are well defined)

• Program: description of algorithm by some
computer language
– (Sometimes it never halt)

2

Design of Good Algorithm
• There are some design method
• Estimate time complexity (running time) and

space complexity (quantity of memory)
• Verification and Proof of Correctness of

Algorithm

• Bad algorithm
– Instant idea: No design method
– Just made it: No analysis of correctness and/or

complexity

3

Simple example and algorithm

4

• Stock trading algorithm
Goal: Maximize your benefit
– Naïve method
– Some improvements
– More improvement: from O(n2) to O(n)

Stok trading (maximize benefit)
• You would buy once and sell once. Can you

find the maximum benefit?

5

2017.01 137
2017.02 150
2017.03 124
2017.04 118
2017.05 145
2017.06 132
2017.07 119
2017.08 105
2017.09 139
2017.10 138
2017.11 129
2017.12 100

Note:
You cannot sell

before buy!!

Formalization of the problem

• int sp[n]: array of stock prices (e.g. n=12)
• When you buy at month i and sell at month j

– buy: sp[i]
– sell: sp[j]
– benefit: sp[j] - sp[i]

• Goal: maximize sp[j]-sp[i]
That is, compute the following;

max{sp[j] - sp[i] | 0<= i < j < n}

6

Outline of algorithms

• Method A

• Method B:

7

for i=0 to n-2
for j=i+1 to n-1

find benefit sp[j]-sp[i]

for j=1 to n-1
for i=0 to j-1

find benefit sp[j]-sp[i]

Algorithm based on method A

• Is the following algorithm efficient?

8

MaxBenefit(sp[],n){/*sp[0]…sp[n-1]*/
mxp=0; /*Maximum benefit*/
for i=0 to n-2

for j=i+1 to n-1
d = sp[j] – sp[i]; /*benefit*/
if d > mxp then mxp = d;

/*Update max. benefit*/
endfor

endfor
return mxp;

}

Algorithm based on method A

• Is the following algorithm efficient?

9

MaxBenefit(sp[],n){/*sp[0]…sp[n-1]*/
mxp=0; /*Maximum benefit*/
for i=0 to n-2

for j=i+1 to n-1
d = sp[j] – sp[i]; /*benefit*/
if d > mxp then mxp = d;

/*Update max. benefit*/
endfor

endfor
return mxp;

}

For fixed i, benefit is maximum when
sp[j] is maximum
We don’t need to compute

sp[j]-sp[i] every time

Algorithm based on method A
(Improved)

10

MaxBenefit(sp[],n){ /*sp[0]…sp[n-1]*/
mxp=0; /* Maximum benefit */
for i=0 to n-2

mxsp = sp[i];
for j=i+1 to n-1

if sp[j] > mxsp then mxsp = sp[j];
endfor
d = mxsp – sp[i];
if d > mxp then mxp = d;

endfor
return mxp;

}

Subtraction is out of loop

mxsp: maximum trade

Outline of algorithms

• Method A

• Method B:

11

for i=0 to n-2
for j=i+1 to n-1

find benefit sp[j]-sp[i]

for j=1 to n-1
for i=0 to j-1

find benefit sp[j]-sp[i]

Algorithm based on method B

12

MaxBenefit(sp[],n){ /*sp[0]…sp[n-1]*/
mxp=0; /* Maximum benefit */
for j=1 to n-1

mnsp = sp[j];
for i=0 to j-1

if sp[i] < mnsp then mnsp = sp[i];
endfor
d = sp[j] - mnsp;
if d > mxp then mxp = d;

endfor
return mxp;

}

mnsp: cheapest stock price

Efficiency of algorithms

• Number of loops (or repeating)
– Method (A): number of loops is O(n2)

– Method (B): number of loops is O(n2)

13Q. Can we decrease them?

Notation that
proportion to n2

Maybe
tomorrow?

More improvement of algorithms;
decreasing the number of loops

• Consider the second loop
– Method A:

• MAX[i,n-1] is the maximum between time i and time n-1
• It computes in order MAX[1,n-1], MAX[2,n-1],…
Q: can we compute MAX[i,n-1] from MAX[i-1,n-1]?

– Method B:
• MIN[0,j-1] is the minimum between time 0 to time j-1
• It computes in order MIN[0,0], MIN[0,1], …
Q: can we compute MIN[0,j] from MIN[0,j-1]?

14

NO!

YES! MIN[0,j] = min(MIN[0,j-1],sp[j])

Algorithm based on method B

15

MaxBenefit(sp[],n){ /*sp[0]…sp[n-1]*/
mxp=0; /* Maximum benefit */
for j=1 to n-1

mnsp = sp[j];
for i=0 to j-1

if sp[i] < mnsp then mnsp = sp[i];
endfor
d = sp[j] - mnsp;
if d > mxp then mxp = d;

endfor
return mxp;

}

• When j=k:
mnsp is the minimum
between sp[0] to sp[k-1]

• When j=k+1:
mnsp is the minimum
between sp[0] to sp[k]

We can keep msf, the minimum
when j=k, and use it; when j=k+1, the
minimum is the smaller one of msf
and sp[k].

Efficient algorithm

• Algorithm that runs in O(n) time

16

MaxBenefit(sp[],n){ /*sp[0]…sp[n-1]*/
mxp=0; /* Maximum benefit */
msf = sp[0]; /* Cheapest value so far */
for j=1 to n-1

d = sp[j] - msf;
if d > mxp then mxp = d;
if sp[j] < msf then msf = sp[j];

endfor
return mxp;

}

