

School of Information Science
Outline
Information Measures - Entropy - Joint Entropy and Conditional Entropy - Kullback Leibler Distance (Relative Entropy) Mutual Information - Chain Rules Information Inequalities - Log Sum Inequality Data Processing Inequality Fano's Inequality

AIST

Entropy (1)

School of Information Science

Definition 4.1.1: Entropy

The entropy H(X) of a discrete random variable X is defined by:

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

where with the limit: $0\log 0 = 0$

entropy H(X) does NOT take negative values.

Note that the base of the logarithm is in many cases 2, with which entropy measure is measured in *bits*. However, it should not necessarily be always the case. If the base is *e*, the measure is *nats*.

Definition 4.1.2: Equivalent Description:

$$H(X) = -E_p[\log p(x)] = E_p\left[\log \frac{1}{p(x)}\right]$$

where E_p is the expectation with respect to the distribution p.

		School of Information Science
AIST STEAT AND	Entropy (2)	
Property Since 1	p 4.1.1: Logarithm $\log_b p(x) = \log_b a \log_a p(x)$,	
	$H_b(X) = (\log_b a) H_a(X)$	
holds, v	where $H_y(X) = -p(X)\log_y p(X)$ with $y = a$ or b.	
Example	4.1.1: Binary Random Variable	
Let	$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases}$	
Then,	$H(X) = -p \log p - (1-p) \log(1-p)$	
Someti denote	mes, because of the definition above, the end d as $H(X) = H(p)$	tropy is also

School of Information Science **Joint Entropy and Conditional Entropy (1) Definition 4.1.3: Joint Entropy** The joint entropy H(X, Y) of discrete random variables X and Y is defined by: $H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x, y) = -E_p[\log p(x, y)]$ where E_p is the expectation with respect to the joint distribution p. Note that H(X, Y) does NOT take negative values. **Definition 4.1.4: Conditional Entropy** If discrete random variables X and Y follow the joint distribution p(x, y), conditional entropy H(Y|X) is defined as: $H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x) = -\sum_{x \in X} p(x)\sum_{y \in Y} p(y|x)\log p(y|x)$ $= -\sum_{x \in X} \sum_{y \in Y} p(x)p(y|x)\log p(y|x) = -\sum_{x \in X} \sum_{y \in Y} p(x, y)\log p(y|x) = -E_{p(x,y)} \{\log p(Y|X)\}$

School of Information Science
Joint Entropy and Conditional Entropy (3)
Corollary 4.1.2: $H(X,Y Z) = H(X Z) + H(Y X,Z)$ Proof: Obvious from the chain rule.
Remark: $H(X Y) \neq H(Y X)$ However, $H(X) - H(X Y) = H(Y) - H(Y X)$ (= $H(X,Y)$: Mutual Information)
Example 4.1.3: Let random variables $x, y \in \{1, 2, 3, 4\}$ have the following joint distribution:
$p(X = x, Y = y) = \begin{bmatrix} \frac{1}{8} & \frac{1}{16} & \frac{1}{32} & \frac{1}{32} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{32} & \frac{1}{32} \\ \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ \frac{1}{4} & 0 & 0 & 0 \end{bmatrix} \downarrow \qquad \qquad$

	School of Information Science
JAIST	Kullback Leibler Distance
Definiti	on 4.1.5: Kullback Leibler Distance
The Kullb functions	back Leibler distance $D(p q)$ between the two probability distribution $p(x)$ and $q(x)$ is defined as:
	$D(p q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)}$
with 01o	$g\frac{0}{a} = 0$, $p\log\frac{p}{0} = \infty$
Propert	y 4.1.2: Distance between Probability Distributions
(1)	$D(p q) \neq D(q p)$ in general
(2)	D(p q) is non-negative, and is zero if and only if $p=q$ for all x.
(3)	The Kullback Leibler distance is sometimes called <i>relative entropy</i> .
(4)	If the probability distribution q , which is believed to be correct, is different from the true distribution p , we need
	H(p) + D(p q)
	bits on the average to describe the random variable following <i>p</i> .

School of Information Science

AIST

Mutual Information (1)

Definition 4.2.1: Mutual Information

Consider two random variables X and Y with a joint probability distribution function p(x,y) and the marginal distributions p(x) and p(y). The mutual Information I(X, Y) is the relative entropy between the joint distribution and the product distribution p(x)p(y), i.e.,

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

= $D\{p(x, y) \| p(x)p(y)\} = E_{p(x, y)} \left(\log \frac{p(X, Y)}{p(X)p(Y)} \right)$

Theorem 4.2.1: Entropy and Mutual Information I(X;Y) = H(X) - H(X|Y)

Observation:

The mutual information I(X, Y) is the reduction in the uncertainty of X by knowing Y.

Exercise: Give a proof for Theorem 4.2.1.

	School of Information Science
JAIST TETET LANDELLE	Mutual Information (4)
Definitic Conditio defined	on 4.2.2: Conditional Mutual Information onal mutual information of random variable X and Y, given Z is by: $I(X;Y Z) = H(X Z) - H(X Y,Z)$ $= E_{p(x,y,z)} \left(\log \frac{p(X,Y Z)}{p(X Z)p(Y Z)} \right)$
Theorem	1 4.2.3: Chain Rule for Mutual Information
	$I(X_{1}, X_{2}, \dots, X_{n}; Y) = \sum_{i=1}^{n} I(X_{i}; Y X_{i-1}, X_{i-2}, \dots, X_{1})$
Proof:	$I(X_{1}, X_{2}, \dots, X_{n}; Y) = H(X_{1}^{i=1}, X_{2}, \dots, X_{n}) - H(X_{1}, X_{2}, \dots, X_{n} Y)$
	$= \sum_{i=1}^{n} H(X_{i} X_{i-1}, \dots, X_{1}) - \sum_{i=1}^{n} H(X_{i} X_{i-1}, \dots, X_{1}, Y)$ $= \sum_{i=1}^{n} I(X_{i}; Y X_{1}, X_{2}, \dots, X_{i-1})$

Subscription Science **Information Inequalities (2) Information Inequalities (2) Theorem 4.3.2: Convexity of Relative Entropy** D(p||q) is convex in the pair (p,q), i.e., if (p_1,q_1) , (p_2,q_2) , are two pairs of the probability distribution of $x \in X$, $D(\lambda p_1 + (1-\lambda)p_2 ||\lambda q_1 + (1-\lambda)q_2) \le \lambda D(p_1 ||q_1) + (1-\lambda)D(p_2 ||q_2)$, $0 \le \lambda \le 1$ Proof: Applying the log sum inequality to a term on LHS, $(\lambda p_1 + (1-\lambda)p_2) \log \left(\frac{\lambda p_1(x) + (1-\lambda)p_2(x)}{\lambda q_1(x) + (1-\lambda)q_2(x)} \right)$ $\le \lambda p_1(x) \log \left(\frac{\lambda p_1(x)}{\lambda q_1(x)} \right) + (1-\lambda)p_2(x) \log \left(\frac{(1-\lambda)p_2(x)}{(1-\lambda)q_2(x)} \right)$ Summing this over all $x \in X$, we obtain the equation shown in the theorem.

Definition 4.3.1: Concavity A function *f* is concave, if *-f* is convex.

	School of Information Science
JAIST	Information Inequalities (3)
Theore	m 4.3.3: Concavity of Entropy
H(p) is a	a concave function of <i>p</i> .
Proof:	$H(p) = \log X - D(p u)$
where <i>u</i> Then the	is the uniform distribution having cardinality $ X $. e concavity of $H(p)$ is obvious.
Theore	m 4.3.4: Concavity of Mutual Information
Let X and	Y be random variables having a joint distribution $p(x,y) = p(x) p(y x)$.
Mutual inf a convex	formation $I(X; Y)$ is a concave function of $p(x)$ for fixed $p(y x)$, and function of $p(y x)$ for fixed $p(x)$.
Proof:	$I(X,Y) = H(Y) - H(Y \mid X) = H(Y) - \sum_{x} p(x)H(Y \mid X = x)$

	School of Information Science	
JAIST Internet Antonio and	Information Inequalities (5)	
Theorem	n 4.3.4 (Proof continued-2):	
Define q_{λ}	$(x, y) = p(x)p_{\lambda}(y)$	
Obviously,	$q_{\lambda}(x, y) = \lambda q_1(x, y) + (1 - \lambda)q_2(x, y)$	
Since the distribution	Since the mutual information is Kullback Leibler distance between the joint distribution and the product of the marginals,	
	$I(X;Y) = D(p_{\lambda} q_{\lambda})$	
and since the Kullback Leibler distance (=relative entropy) is a convex function of (p, q) , it follows that the mutual information is a convex function of the conditional distribution.		

	School of Information Science
JAIST	Data Processing Inequality (2)
Theore	m 4.4.1: Data Processing Inequality
lf X→Y→	Z, then $I(X;Y) \ge I(X;Z)$
Proof:	Since $I(X;Y,Z) = I(X;Z) + I(X;Y Z) = I(X;Y) + I(X;Z Y)$
Howeve	r, since X and Z are conditionally independent of Y given, I(X;Z Y) = 0
Since I	$(X;Y Z) \ge 0$, we have: $I(X;Y) \ge I(X;Z)$.
Corolla I(Y;Z)≥ Corolla	ry 4.4.1: $X(X;Z)$ Proof: Obvious from the definition.ry 4.4.2:
<mark>If</mark> X→Y→ Function	$Z=f(Y)$, then $I(X;Y) \ge I(X;f(Y))$ Proof: Obvious from the definition. does not increase information!!!
Corolla If X→Y→	ry 4.4.3: Z , then $I(X;Y Z) \le I(X;Y)$ Proof: Obvious from the definition.
Observat	tion reduces the dependence of the random variables!!!

	School of Information Science
JAIST	Fano's Inequality (2)
Theorem 4.5.1 (Proof continued-1): H(E, X Y) = H(X Y) + H(E X,Y) = H(E Y) + H(X E,Y)	
	$ \begin{array}{c c} & & & \\ \hline =0 & & \\ \hline (a) & (b) & (c) \end{array} \end{array} $
 (a) Since <i>E</i> is conditions (b) Since conditions (c) This term is 	a function of X and $g(Y)$, if the receiver knows X, Y and $g(Y)$ as of <i>E</i> , there is no uncertainty on <i>E</i> , and hence this term is zero. ditioning reduces entropy, $H(E Y) \le H(E) = H(P_e)$ s bounded as:
H(X E)	$E,Y) = Prob(E = 0) \underbrace{H(X Y, E = 0)}_{=0} + Prob(E = 1) \underbrace{H(X Y, E = 1)}_{\leq \log(X - 1)} (e)$
(d) Since give (e) Given <i>E</i> =1 logarithm o	en $E=0$, $X=g(Y)$ is known. Therefore, there is no uncertainty. , we can upper-bound the conditional entropy by the of the remaining outcomes $ X -1$.
Combining th	ese results, we obtain Fano's inequality.

	School of Information Science
JAIST	Summary
	We have made a journey on the topics:
	 Information Measures Entropy Joint Entropy and Conditional Entropy Kullback Leibler Distance (Relative Entropy)
	2. Mutual Information - Chain Rules
	3. Information InequalitiesLog Sum Inequality
	4. Data Processing Inequality
	5. Fano's Inequality