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Motivation
Lattices have potential application to various communication systems

▶ Shaping gain using sphere-like constellation rather than QAM
▶ Compute-forward relay; particularly as a type of multiple access scheme
▶ Physical-layer network coding such as bi-directional relay
▶ Integer-forcing MIMO

Finite-length lattices are needed to practically realize such systems

This talk is about lattice codes that form a cyclic group. Potential benefit:

▶ Simplified encoding, since there is a single generator
▶ Various lattice codes may have fractional number of bits per dimension, leading to

encoding loss. Using cyclic lattice code may reduce this loss.
▶ They are interesting

This is a cyclic group, not a cyclic code.

2 / 16



(Nested) Lattice Code

A lattice Λ is a discrete additive subgroup of Rn.
The generator matrix for Λ is G:

Λ = {Gb | b ∈ Zn}

The check matrix is H = G−1. A lattice code C:
▶ C is the coset leaders of Λc/Λs

▶ Λc is the fine coding lattice with Gc,Hc

▶ Λs is the coarse shaping lattice with Gs,Hs

▶ Required to form lattice code:
Λs ⊆ Λc ⇔ HcGs is integer

C

A lattice is an infinite structure, a (nested) lattice code is a finite structure.
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Self-Similar Lattice Codes.... Or Not?

Self-similar lattice code The shaping lattice Λs is scaled from the coding lattice Λc:

▶ C = Λ/MΛ

▶ Sufficient for theoretical analysis (many results)

Non-self-similar lattice code1 Practical reasons to not use self-similar lattices:

▶ Λc should have high coding gain and be easy to decode (e.g. lattices based on
LDPC codes)

▶ Λs should have high shaping gain and have an efficient quantization algorithm:
▶ Well-known lattices like E8, Barnes-Wall, Leech, or
▶ Convolutional code lattices with Viterbi algorithm quantization

1A more clever name is desired.
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Rectangular Encoding

Rectangular encoding A bijective mapping from
information b to codeword x:

x = Gcb−Q(Gcb)

= Gcb mod Λs

If the parallelogram P is a fundamental region for Λs:

▶ coding lattice inside P are coset leaders

▶ there is a one-to-one mapping between two cosets

Integers b = [b1, b2, . . . , bn]
t are information:

bi ∈ {0, 1, . . . ,Mi − 1}

C has M = 2nR =
∏n

i=1Mi codewords
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Cyclic Lattice Codes

A cyclic group is a group which can be generated by a single element g, called the
generator.

The integers Z are a cyclic group generated by 1 or −1 since 1 + 1 = 2, 1 + 1 + 1 = 3,
etc.

A cyclic lattice code2 is a nested lattice code which forms a cyclic group.

▶ Any lattice code Λc/Λs is a group (see next slide)

▶ But in general, a lattice code is not a cyclic group

Self-similar lattice codes do not form a cyclic group. But under certain conditions,
non-self-similar lattice codes do form a cyclic group.

2a cyclic group, not a cyclic code
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Group Structure of Lattice Codes
A lattice code C forms a group under addition modulo Λs:

x1 ⊕ x2 = x1 + x2 mod Λs

This group property is important for compute-forward.

A lattice code is generally not a cyclic group since g1, . . . ,gn are linearly independent:

x =

 | | |
g1 g2 · · · gn
| | |



b1
b2
...
bn

 mod Λs

But if we can find [M1,M2, . . . ,Mn] = [1, 1, . . . ,M ], then:

▶ b1 to bn−1 = 0 and g1 to gn−1 are not used.
▶ Mn = M and any codeword is given by gnbn mod Λs.

The generator for the cyclic lattice code is gn.
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How A Lattice Code Can Be Made Cyclic

▶ There is a one-to-one mapping
between coset leaders in the
parallelogram and C.

▶ If all points in the parallelogram are
generated by a single g, then this will
generate the whole group.

▶ Thus, C is cyclicly generated by g.

-2 -1 0 1 2 3 4 5 6 7 8 9

x
1

-2

-1

0

1

2

3

4

5

6

7

8

9

x 2
8 / 16



Technical Lemma

Lemma 1 : Consider an n-dimension lattice Λ
with generator matrix

G =
[
g1 g2 . . . gn

]
The line segment with endpoints 0 and

y = G · b with b =
[
b1 b2 . . . bn

]T
does

not intersect any other point of Λ if and only if
gcd(b1, b2, . . . , bn) = 1.

▶ b = [3, 4] are relatively prime — no other
lattice point on the red segment

▶ b = [4, 2] 4 divides 2 — there is another
lattice point on the green segment
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Existence of Cyclic Lattice Codes

For the coding lattice Λc,

Gc =

 | | |
g1 g2 · · · gn
| | |


Define qi as columns of:

det(HcGs)(HcGs)
−1 =

 | | |
q1 q2 · · · qn

| | |


Lemma 2: An n dimensional nested lattice code C with Λs ⊆ Λc is a cyclic lattice code
with generator gi if and only if gcd(qi) = 1.

This gcd condition is required only for column qi corresponding to the cyclic generator
gi.
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Design for n = 2
Consider coding lattice and shaping lattice
with generator matrices:

Gc =

[
4
3

8
9

4
3

2
9

]
and Gs =

[
16
9

4
9

22
9

28
9

]

Then:

det(HcGs)(HcGs)
−1 =

[
−4 −3
1 2

]

▶ 4, 1 are coprime, so g1 = [43 ,
4
3 ]

t

cyclicly generates C
▶ 3, 2 are coprime, so g2 = [89 ,

2
9 ]

t

cyclicly generates C, also.
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Possible Design for General n

Since the design places a restriction on W−1 = (HcGs)
−1, define W in a convenient

form:

W =



0 . . . 0 a b c
1 . . . 0 0 0 0
...

. . .
...

...
...

...
0 . . . 1 0 0 0
0 . . . 0 0 1 1

wn,1 . . . wn,n−3 wn,n−2 wn,n−1 wn,n


.

For this design, gcd(c− b, a) = 1 gives a cyclic lattice code, with matrix inversion
using cofactors.
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Group Isomorphism
Compute-and-forward requires the lattice code satisfy a group isomorphism:

enc(b1 ⊞ b2) = enc(b1)⊕ enc(b2),

Feng, Silva and Kschischang gave conditions on the generator matrix to possess group
isomorphism:

Lemma For arbitrary nested lattice Λs ⊆ Λc, if all elements from row i of HcGs are
divisible by Mi for all i = 1, 2, ..., n, then an isomorphism exists between group b,⊞
and C,⊕.

To design a cyclic lattice code with group isomorphism Write the last row of W:[
r1M r2M · · · rnM

]
Then det(W) = M leads to a linear diophantine equation in ri.

13 / 16



Design Using n = 8 with E8 for Shaping
Suppose we want to design a (1) cyclic lattice code with M = 64 codewords (rate
0.75) which has (2) shaping gain provided by the E8 lattice and possesses (3) group
isomorphism.

W =



0 0 0 0 0 0 a b c
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 Mr6 Mr7 Mr8


.

Choose (a, b, c) = (7, 17, 19) to make the lattice cyclic. Solve det(W) = 64 to obtain
(r6, r7, r8) = (95, 65, 92).

Finally, choose Gc = GsW
−1. This gives a coding lattice with coding gain 2.67 dB
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Design Using n = 8 with E8 for Shaping
As a consequence of having three “design” columns in W, the resulting lattice code is
in 3 dimensions
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Conclusion

▶ Gave conditions under which a lattice code forms a cyclic group.

▶ Gave a few basic constructions with dimension n = 2 and n = 8.

▶ Possibly simplifies encoding by replacing a generator matrix with a generator
vector

▶ May reduce mapping overhead when the number of bits/dimension is not a power
of two.
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