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Periodic Boundary Conditions

• Suppose we are interested in the bulk properties of a material.

• Could in principle study a large finite system, but would have to simulate an infeasibly
large number of particles to make surface effects negligible.

• Eliminate surfaces by using periodic boundary conditions.



The Ewald Interaction (I): the Problem

• Näıve expression for the electrostatic energy of a neutral, periodic cell:

V̂ =
1

2

∑
i6=j

qiqj
|ri − rj|

+
1

2

∑
R6=0

∑
i,j

qiqj
|ri − rj −R|

,

where qi is the charge of particle i in the cell and {R} are the lattice vectors.

• Unfortunately this sum is conditionally convergent.

– Riemann series theorem: can rearrange terms of a conditionally convergent sum to
get any answer you like. . .

– Physically, O(r2) distant, neutral cells at distance r make dipole contributions
[O(r−2)] to the electrostatic potential at any given point.

• Practical solution: use Ewald method to calculate interaction energy.1

– Corresponds to a choice of boundary conditions on a macroscopic crystal.

1 P. P. Ewald, Ann. Phys. 64, 253 (1921).



The Ewald Interaction (II): Fourier Series

• Add uniform, neutralising background if nec. and write the charge density as

ρ(r) =
∑
R

∑
i

qiδ(r− ri −R)− Q
Ω
,

where Q =
∑
i qi is the total charge of the cell and Ω is the cell volume.

• Fourier representation of charge density:

ρ(r) =
1

Ω

∑
G 6=0

ρ(G) exp(−iG · r),

where G = 0 is excluded because the cell is electrically neutral.

• Assume the electrostatic potential is periodic. Choose it to be 0 on average. Then

Φ(r) =
1

Ω

∑
G 6=0

Φ(G) exp(−iG · r).



The Ewald Interaction (III): Poisson’s Equation

• Periodic solution to Poisson’s equation
corresponds to adding a constant electric
field to cancel that due to the nonzero
dipole moment of the simulation cell.

• Ewald interaction corresponds to
embedding the material in a perfect metal
so that surface polarisation charges are
screened. Tin-foil boundary conditions.
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• Poisson’s equation for the electrostatic potential:

∇2Φ(r) = −4πρ(r).

• Hence the Fourier components are related by

Φ(G) =
4πρ(G)

G2
.



The Ewald Interaction (IV): the Charge Density

• The charge density due to a set of point charges can be written as

ρ(r) = ρa(r) + ρb(r) =

[∑
i

∑
R

qi

(γ
π

)3/2

exp
(
−γ|r− ri −R|2

)
− Q

Ω

]

+

[∑
i

∑
R

qi

(
δ(r− ri −R)−

(γ
π

)3/2

exp
[
−γ|r− ri −R|2

])]
.

• The electrostatic energy of the first term will be evaluated as a sum in reciprocal
space; that of the second term will be evaluated as a sum in real space.

• The electrostatic energy V̂Ew is
independent of γ.

– Smaller values make reciprocal-space
sum more rapidly convergent.

– Larger values of γ make real-space sum
more rapidly convergent.
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The Ewald Interaction (V): the Reciprocal-Space Sum

• The Fourier components of ρa are

ρa(G) =
∑
i

qi exp[−G2/(4γ)] exp(iG · ri).

• Hence the electrostatic potential due to ρa is

Φa(r) =
4π

Ω

∑
i

∑
G6=0

qi
exp[−G2/(4γ)]

G2
exp[iG · (r− ri)].



The Ewald Interaction (VI): the Real-Space Sum

• Consider a Gaussian charge distribution centred on the origin:

ρ0(r) =
(γ
π

)3/2

exp(−γr2).

• The electrostatic potential is

Φ0(r) =
(γ
π

)3/2
∫

All space

exp(−γr′2)

|r′ − r|
dr′ =

erf
(√
γr
)

r

• The potential due to ρb is therefore

Φb(r) =
∑
i

∑
R

qi
1− erf

(√
γ|r− ri −R|

)
|r− ri −R|

− πQ
Ωγ

,

where we have added the constant term −πQ/(Ωγ) to ensure that
∫

Ω
Φb(r) dr = 0.



The Ewald Interaction (VII): the Ewald Energy

• The electrostatic energy of a set of point charges is

V̂ =
1

2

∑
j

qjΦj,

where Φj is the potential at rj due to the charges other than j.

• Noting that limx→0 erf(x)/x = 2/
√
π, we find that

Φj = lim
r→rj

Φ(r)− qj
|r− rj|

=
4π

Ω

∑
i

∑
G6=0

qi
exp[−G2/(4γ)] exp[iG · (rj − ri)]

G2

+
∑
R

∑
i

′qi
erfc

(√
γ|rj − ri −R|

)
|rj − ri −R|

− 2

√
γ

π
qj −

πQ

Ωγ
,

where
∑′
i means that i = j is excluded when R = 0.



The Ewald Interaction (VIII)

• Can write Ewald energy in the form

V̂Ew =
1

2

∑
i6=j

qiqjvE(ri − rj) +
1

2

∑
j

q2
jvM

=
1

2

∑
i6=j

qiqj [vE(ri − rj)− vM ] if Q = 0,

where

vE(r) =
4π

Ω

∑
G6=0

exp[−G2/(4γ)] exp(iG · r)

G2
+
∑
R

erfc
(√
γ|r−R|

)
|r−R|

− π

Ωγ

vM =
4π

Ω

∑
G6=0

exp[−G2/(4γ)]

G2
+
∑
R6=0

erfc
(√
γR
)

R
− 2

√
γ

π
− π

Ωγ
.

• Fourier transform (distribution) of vE(r) is vE(G) = 4π/G2.



Simulation and Primitive Unit Cells

• In one-electron theories (e.g. density-functional or Hartree–Fock theory) we can reduce
the problem to the primitive unit cell and integrate over the first Brillouin zone.

• Reduction to the primitive unit cell is not possible in many-body calculations:
correlation effects may be long-range.

– Must use a simulation supercell consisting of several primitive cells in QMC.
– When constructing the Slater wave function, single-particle Bloch orbitals on an
l ×m× n k-point mesh must be treated as Bloch orbitals at a single k point for
the supercell consisting of l ×m× n primitive cells.



Translational Symmetry

• Translational symmetries of the Hamiltonian:

1. Ĥ(r1, . . . , ri + Rs, . . . , rN) = Ĥ(r1, . . . , ri, . . . , rN) ∀i ∈ {1, . . . , N},
2. Ĥ(r1 + Rp, . . . , ri + Rp, . . . , rN + Rp) = Ĥ(r1, . . . , ri, . . . , rN)

where Rs and Rp are the simulation-cell and primitive-cell lattice vectors.

• Lead to many-body Bloch conditions:

1. Ψks(r1, . . . , rN) = Uks(r1, . . . , rN) exp (iks ·
∑
i ri)

2. Ψkp(r1, . . . , rN) = Wkp(r1, . . . , rN) exp
(
ikp · 1

N

∑
i ri
)

where U has periodicity of the simulation cell for all coordinates and W is invariant
under simultaneous translation of all coordinates through Rp.2

• Proof: similar to proof of single-electron Bloch theorem.

• Nonzero ks: twisted boundary conditions (see later).

2 G. Rajagopal et al., Phys. Rev. Lett. 73, 1959 (1994); G. Rajagopal et al., Phys. Rev. B 51, 10591 (1995).



Single-Particle Finite-Size Errors

• Momentum quantisation: Bloch k vectors must be integer multiples of simulation-cell
reciprocal lattice vectors, so that orbitals are periodic.

– Instead of integrating over orbitals inside the Fermi surface, one sums over the
discrete set of k vectors when a finite cell is used. (k-point sampling.)

• Usually find that the fluctuations in the QMC
energy as a function of system size are proportional
to the corresponding k-point sampling errors in the
DFT energy.

• Hence can use DFT total energy (or Hartree–
Fock kinetic energy) data to extrapolate to infinite
system size.

• Large numbers of k points are prohibitively
expensive in QMC because an n× n× n k-point
mesh must be unfolded into an n×n×n simulation
cell.

Occ. k for finite elec. gases.
Dashed line: Fermi circle.



Twist Averaging (I)

• Periodic boundary conditions: Ψ(ri+Rs) = Ψ(ri). Single-particle orbitals are of the
Bloch form ψk(r) = exp(ik · r)uk(r), where u has the periodicity of the primitive cell
and k = Gs is a reciprocal lattice vector of the simulation cell.

• Twisted boundary conditions: Ψ(ri + Rs) = exp(iks ·Rs)Ψ(ri), where ks is in the
first Brillouin zone of the simulation cell. Single-particle orbitals are of the form
ψk(r) = exp(ik · r)uk(r), where k = ks + Gs, where Gs is a reciprocal lattice point
of the supercell.

k
x

k
y

k
x

k
y



Twist Averaging (II)

• Canonical-ensemble twist averaging3: average over all ks, i.e. average over all offsets
to the grid of k vectors.

– Greatly reduces single-particle finite-size errors.
– Twist-averaged Fermi surface is not quite right. Gives small positive bias to

Hartree–Fock kinetic energy because k2/2 is concave.

• Grand-canonical-ensemble twist averaging: average over all ks, occupying only those
states inside Fermi surface at each ks.

– Particle number fluctuates.
– Eliminates finite-size error in Hartree–Fock kinetic energy.
– Better to average grand potential Φ = E − µN , where µ = EF is the chemical

potential, because Φ is stationary w.r.t. changes in N . Then evaluate 〈E〉 =
〈Φ〉+ µ〈N〉.

3 C. Lin et al., Phys. Rev. E 64, 016702 (2001).



Twist Averaging (III)

• Effect of twist averaging on Hartree–Fock kinetic and exchange energies for a 3D
paramagnetic electron gas of density parameter rs = 1 a.u.:
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• Replaces set of k vectors with a Fermi volume.

– Shape of surface not quite right: gives small, positive bias to kinetic energy.

• Twist averaging greatly dampens the energy fluctuations caused by shell filling.



Making Real Orbitals (I)

• QMC calculations run a bit faster if real arithmetic is used.

• Suppose Bloch orbitals at ±k are occupied. Then

ψ∗k(r) = exp(−ik · r)u∗k(r) = ψ−k(r).

• Nonsingular linear transformations of the columns of the Slater determinant leave the
wave function unchanged (up to normalisation).

• So can replace occupied orbitals ψk and ψ−k by

ψk+ =
1√
2

[ψk(r) + ψ−k(r)] =
√

2Re [ψk(r)]

ψk− =
1√
2i

[ψk(r)− ψ−k(r)] =
√

2Im [ψk(r)]

without changing the Slater wave function.



Making Real Orbitals (II)

• The k points are in ±k pairs if the offset is ks = 0 or ks = Gs/2, where Gs and Gp

are simulation-cell and primitive-cell G vectors.
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Finite-Size Extrapolation of the Total Energy Per Particle

• Fit QMC data {EN} to

EN = E∞ + a
(
EDFT
N − EDFT

∞
)
− b

N
,

where a, b and E∞ are fitting parameters and EDFT
N is the DFT energy of an

N -particle system.

– EDFT
N is the DFT energy with the k-point mesh corresponding to the N -electron

simulation cell. EDFT
∞ is the DFT energy in the limit of perfect k-point sampling.

• EN and EDFT
N can be replaced by their twist-averaged versions.

– To maximise the cancellation of errors, exactly the same twists should be used in
DFT and QMC.

• For real systems, obtaining EN at several different cell sizes can be time-consuming.

• There are several variants of this fitting formula in the literature; e.g. use Hartree–Fock
kinetic energy instead of DFT energy.



Density and Static Structure Factor

• Charge density operator:

ρ̂(r) =
∑
i

δ(r− ri).

• Charge density: ρ(r) = 〈ρ̂(r)〉.

• Fourier transform of the density operator:

ρ̂(G) =
∑
i

exp(−iG · ri).

• Fourier transform of the density: ρ(G) = 〈ρ̂(G)〉.

• Static structure factor:

S(G) =
1

N
(〈ρ̂(G)ρ̂∗(G)〉 − ρ(G)ρ∗(G)) .



Exchange–Correlation Hole

• Pair density:

ρ2(r, r′) =

〈∑
i6=j

δ(r− ri)δ(r
′ − rj)

〉
.

• Exchange–correlation hole:

ρxc(r, r
′)ρ(r′) = ρ2(r, r′)− ρ(r)ρ(r′).

• System-averaged exchange–correlation hole:

ρxc(r) =
1

N

∫
ρxc(r

′ + r, r′)ρ(r′) dr′.



Hartree and Exchange–Correlation Energies

• Ewald energy:

〈
V̂Ew

〉
=

NvM
2

+

∫
|Ψ(R)|21

2

∑
i6=j vE(ri − rj) dR∫
|Ψ|2 dR

=
N

2

∫
[vE(r)− vM ] ρxc(r) dr +

1

2

∫ ∫
vE(r− r′)ρ(r)ρ(r′) dr dr′

=
N

2

∑
G6=0

4π

ΩG2
[S(G)− 1] + vM

+
∑
G6=0

2π

ΩG2
ρ(G)ρ∗(G).

– First term: exchange–correlation energy (interaction of electrons with their
exchange–correlation holes).

– Second term: Hartree energy (interaction of charge densities).



Coulomb Finite Size Errors

• Charge density and structure factor converge rapidly with system size; suggests that
finite-size errors are due to slow convergence of Ewald interaction.

• Taylor expansion of Ewald interaction:

vE(r)− vM =
1

r
+

2π

3Ω
rTWr +O

(
r4

Ω5/3

)
,

where tensor W depends on the symmetry of the lattice.

• For large simulation cells first term dominates, but for typical cell sizes second term
is significant.

• Interaction between each electron and its exchange–correlation hole should be 1/r.

• This is enforced in the model periodic Coulomb interaction.4

4 L. M. Fraser et al., Phys. Rev. B 53, 1814 (1996); A. J. Williamson et al., Phys. Rev. B 55, R4851 (1997).



Aside: Minimum Images

• Minimum image distance between particles A and B: distance from A to closest
periodic image of B.

• Minimum image of r is r−RC, where RC is closest sim.-cell lattice point to r.



Model Periodic Coulomb Interaction (I)

• MPC interaction operator:

V̂MPC =
1

2

∑
i6=j

f(ri − rj) +
∑
i

∫
ρ(r) [vE(ri − r)− f(ri − r)] dr

−1

2

∫
ρ(r)ρ(r′) [vE(r− r′)− f(r− r′)] dr dr′,

where f(r) is 1/r treated within the minimum-image convention.

• Electron-electron interaction energy:

〈V̂MPC〉 =
1

2

∫
ρ(r)ρ(r′)vE(r− r′) dr dr′

+

∫ ∫
ρxc(r, r

′)ρ(r′)f(r− r′) dr dr′,

i.e. Hartree energy + exchange–correlation energy.



Model Periodic Coulomb Interaction (II)

• The Hartree energy is calculated using the Ewald interaction while the exchange–
correlation energy is calculated using 1/r (within minimum-image convention).

• Can avoid the need to know ρ exactly by replacing it with the approximate charge
density ρA from a DFT or Hartree–Fock calculation.

– The error due to this approximation is O(ρ− ρA)2.
– Furthermore the operator (vE − vM − f) vanishes as the size of the simulation cell

goes to infinity.

• Ewald and MPC energies per particle are the same in the limit of large system size,
even if approximate charge density is used.

• MPC interaction is quicker to evaluate than the Ewald interaction; however MPC
interaction distorts the XC hole, so Ewald interaction must be used in propagation.5

– Probable reason for behaviour: MPC Hamiltonian does not include equivalent
terms to deal with the error in the kinetic energy.

5 N. D. Drummond et al., Phys. Rev. B 78, 125106 (2008).



Model Periodic Coulomb Interaction (III)
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Finite-Size Correction to the Exchange–Correlation Energy (I)

• Charge density and hence Hartree energy converge rapidly with system size.

• Form of structure factor converges rapidly with system size. It goes as k2 at small k.

• So the finite-size correction to the Ewald interaction energy is6:

∆V =
N

4π2

∫
S(k)− 1

k2
dk− 2πN

Ω

∑
G6=0

S(G)− 1

G2
− NvM

2

=
N

4π2

∫
S(k)

k2
dk− 2πN

Ω

∑
G 6=0

S(G)

G2
≈ 2πN

Ω
lim
k→0

S̄(k)

k2
,

i.e., the leading-order correction is the missing G = 0 term in the sum.7

• ∆V is O(N0), i.e. correction to interaction energy per particle is O(N−1).

6 S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006).
7 To get from the first line to the second, insert factors of exp(−εk2) and exp(−εG2) in the integrand and summand

and choose γ = 1/(2
√
ε) in the Ewald expression for vM ; finally take the limit ε→ 0. Note that S̄(k) = κk2 +O(k4).



Finite-Size Correction to the Exchange–Correlation Energy (II)

• Summary: add (2πN/Ω) limk→0 S̄(k)/k2 to correct exchange–correlation energy.

– Can show that the residual error is O(N−1) in cubic systems and O(N0) in
noncubic systems with noncubic sim. cells.8

– In noncubic systems, try to use a (nearly) cubic simulation cell.

• Finite-size correction and MPC are both essentially exact for cubic systems; results
ought to agree.

– Can prove equivalence directly.

• For an electron gas, random phase approximation implies that S(k) = k2/(2ωp) for

small k, where ωp =
√

4πN/Ω is the plasma frequency.

– Hence ∆V = ωp/4 for an electron gas.

8 N. D. Drummond et al., Phys. Rev. B 78, 125106 (2008).



Finite-Size Correction to the Exchange–Correlation Energy (III)

rs N (EMPC − EEw)/N (a.u. / elec.) ∆VEw/N (a.u. / elec.)
1 54 0.007 81(1) 0.008 02
1 102 0.004 137(9) 0.004 245
1 226 0.001 89(1) 0.001 92
3 54 0.001 551(4) 0.001 543
3 102 0.000 802(2) 0.000 817
3 226 0.000 365(1) 0.000 369

10 54 0.000 242(1) 0.000 254
10 102 0.000 131 9(4) 0.000 134 2
10 226 0.000 060 5(7) 0.000 060 6

• EEw is total SJ-DMC energy per particle obtained using Ewald interaction.

• EMPC is total SJ-DMC energy per particle obtained using MPC interaction.9

• MPC and finite-size-corrected Ewald results are very similar.

9 EEw was used in the branching factor in DMC, so the kinetic energy is the same in the two cases.



MPC v. Exchange–Correlation Correction

• MPC is accurate in both noncubic and cubic systems. Exchange–correlation correction
may not work so well in noncubic systems.

• Exchange–correlation correction can make use of analytic results for long-range
behaviour.

• MPC doesn’t require structure factor (or expansion of structure factor in spherical
harmonics at k = 0).

• Exchange–correlation correction is a more general method. MPC is only applicable
when the leading-order errors are due to slow convergence of vE; doesn’t help when
errors are due to slow convergence of exchange–correlation hole, e.g. in Hartree–Fock
theory.



Finite-Size Correction to the Kinetic Energy (I)

• The two-body correlations described by the Jastrow factor are long-range.

• They are restricted in a finite simulation cell: leads to bias in kinetic energy.

• Correct for this by interpolating Fourier transformation of two-body Jastrow factor.10

• Write Ψ as the product of a long-range two-body Jastrow factor exp(u), which has
the periodicity of the simulation cell and inversion symmetry, and a part consisting of
everything else, Ψs:

Ψ = Ψs exp

∑
i>j

u(ri − rj)

 ,

= Ψs exp

 1

2Ω

∑
G6=0

u(G)ρ̂∗(G)ρ̂(G) +K

 .

10 S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006).



Finite-Size Correction to the Kinetic Energy (II)

• “TI” kinetic-energy estimator:

T̂ =
−1

4
∇2 log(Ψ) = T̂s −

1

8Ω

∑
G6=0

u(G)∇2 [ρ̂∗(G)ρ̂(G)] ,

where Ts = −∇2 log(Ψs)/4.

• Use ∇2 [ρ̂∗(G)ρ̂(G)] = −2G2 [ρ̂∗(G)ρ̂(G)−N ] to show that

〈T 〉 = 〈Ts〉+
1

4Ω

∑
G 6=0

G2 [u(G) 〈ρ̂∗(G)ρ̂(G)〉 −Nu(G)] .

• ρ(k) is only nonzero for G vectors of the primitive lattice. Assuming the sum runs
only over small G,

〈T 〉 = 〈Ts〉+
N

4Ω

∑
G6=0

G2u(G)S∗(G)− N

4Ω

∑
G6=0

G2u(G).



Finite-Size Correction to the Kinetic Energy (III)

u(k) has same form at different N . It diverges as k−2, so limk→0 k
2ū(k) exists.
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Finite-Size Correction to the Kinetic Energy (IV)

• In the infinite system limit, the sum over G should be replaced by an integral.

• Leading-order finite-size error is the omission of the G = 0 contribution in the third
term in the expression for 〈T 〉. Gives a correction11

∆TA ≈ −
N

4Ω
lim
k→0

k2ū(k).

• For an electron gas, random phase approximation (RPA) implies that limk→0 k
2ū(k) =

−4π/ωp.

– Hence ∆TA = ωp/4.

• Unfortunately, the next-to-leading-order correction ∆TB is also important.12

• Residual single-particle finite-size errors in the canonical-ensemble twist-averaged data
are also significant. These errors can be estimated within Hartree–Fock theory.

11 S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006).
12 N. D. Drummond et al., Phys. Rev. B 78, 125106 (2008).



Higher-Order Corrections to the Kinetic Energy

• Magnitude of finite-size corrections to the kinetic energy of 3D electron gases:

KE error (a.u. per elec.)
rs (a.u.) N Single-particle corr. ∆TA ∆TB

1 54 −0.002 8 0.008 0 −0.001 6
1 130 −0.000 65 0.003 33 −0.000 48
3 54 −0.000 31 0.001 54 −0.000 17
3 130 −0.000 072 0.000 641 −0.000 054

10 54 −0.000 027 0.000 254 −0.000 015
10 130 −0.000 006 0.000 105 −0.000 005

• Residual single-particle error is comparable with next-to-leading order correction
(∆TB).



Finite-Size Errors in a 3D Electron Gas (I): High Density

• DMC results for a 3D electron gas, rs = 1 a.u. (using twist averaging and a
Slater–Jastrow wave function):
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Finite-Size Errors in a 3D Electron Gas (II): Intermediate Density

• DMC results for a 3D electron gas, rs = 3 a.u. (using twist averaging and a
Slater–Jastrow wave function):

0 226
-1

102
-1

54
-1

N
 -1

-0.069

-0.068

-0.067

-0.066

D
M

C
 e

n
er

g
y

 (
a.

u
. 

/ 
el

ec
.)

Ewald
MPC
Ewald (lead.-order corr.)

MPC (lead.-order corr.)

Ewald (beyond-lead.-order corr.)

MPC (beyond lead.-order corr.)



Finite-Size Errors in a 3D Electron Gas (III): Low Density

• DMC results for a 3D electron gas, rs = 10 a.u. (using twist averaging and a
Slater–Jastrow wave function):
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2D-Periodic Systems

• Can carry out similar analysis for 2D-periodic systems.

• Leading order error in total energy goes as N−1/4 (i.e., the error in the total energy
per particle goes as N−5/4).

• Theory of corrections doesn’t work so well because exchange–correlation hole is
relatively long-range and therefore slowly convergent with system size.



Finite-Size Errors in Other Quantities

• We have discussed finite-size
errors in the total energy.

• The density converges very
rapidly with system size.

• The convergence of the pair
density is limited by the fact that
its r−8 tail is truncated.

• Open research questions: what
can we say about finite-size
errors in excitation energies?
In 2D they are extremely
significant.
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Finite-Size Exchange–Correlation Functional

• DFT correction to finite-size error in QMC13: use DMC energies for electron gases to
construct finite-size LDA exchange–correlation functionals, then use these functionals
to evaluate finite-size corrections for real systems within DFT.

• Finite-size LDA: exchange–correlation energy at a point in space with density ρ is
equal to the exchange–correlation energy of a finite electron gas of density ρ in a
periodic cell whose volume is equal to the unfolded supercell volume of the real
system.

• Evaluate finite-size correction as difference between a highly converged DFT energy
with the usual (infinite-system) LDA and the finite-size LDA energy for a k-point
sampling corresponding to the QMC calculation to be corrected.

• Single-particle and long-range finite-size errors are corrected simultaneously in this
approach.

• Effects due to shape of simulation cell, etc., are neglected.

13 H. Kwee et al., Phys. Rev. Lett. 100, 126404 (2008).



Conclusions

• QMC simulations of periodic systems suffer from finite-size errors.

• Finite-size errors must be accounted for in any QMC study of condensed matter.

• Methods for dealing with finite-size errors (use appropriate combinations of these;
don’t add the exchange–correlation correction to the MPC energy, for example!):

1. Use a large finite simulation cell!
2. In noncubic systems choose the simulation cell to be as nearly cubic as possible.
3. Make a sensible choice of ks (offset to the grid of k vectors).
4. Twist average to reduce single-particle finite-size errors.
5. Extrapolate to infinite system size using fitting formulae.
6. Use MPC interaction to reduce Coulomb finite-size biases.
7. Add corrections to the kinetic and exchange–correlation energies to account for

the difference between a sum with a missing term and an integral.
8. Add correction evaluated within DFT using infinite- and finite-cell LDA functionals.

• Sometimes have cancellation of finite-size biases when energy differences are taken.


