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Introduction

• DMC is the most accurate first-principles total-energy method for systems with more
than a few tens of electrons.

• VMC is generally used only as a preliminary to DMC studies.

• In this lecture I will (i) explain the theory behind the DMC method and (ii) give some
practical advice on how to run successful DMC calculations.

• You do not need to understand all the details in order to use DMC.

• You do need to be aware of issues such as time-step bias in order to carry out
meaningful DMC work.



Imaginary-Time Schrödinger Equation (I)

• Imaginary-time Schrödinger equation (ITSE):

[
Ĥ − ET

]
Φ = −1

2
∇2Φ + UΦ− ETΦ = −∂Φ

∂t
,

where Φ(R, t) is a function of configuration R and imaginary time t, U(R) is
potential energy and ET is a reference energy .

• Time-dependence of ITSE is separable. Can write

Φ =

∞∑
n=0

cnφn exp[−(En − ET )t],

where En and φn(R) are the nth eigenvalue and eigenfunction of Hamiltonian Ĥ.



Imaginary-Time Schrödinger Equation (II)

• Excited states die away exponentially
compared with the ground state.

• If ET = E0 and initial conditions have
c0 6= 0 then, in the limit t → ∞, Φ is
proportional to φ0.

• The ground-state component of Φ is
“projected out”.

• This is true for any reasonable boundary
conditions on Φ: see later.
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Importance-Sampling Transformation

• Suppose we have a trial wave function Ψ(R). Let f = ΦΨ. Then

−1

2
∇2f +∇ · [Vf ] + [EL − ET ] f = −∂f

∂t
,

where

– f(R, t) = ΦΨ is the importance-sampled or mixed wave function,
– V(R) = Ψ−1∇Ψ is the drift velocity ,
– EL(R) = Ψ−1ĤΨ is the local energy .

• Proof: substitute Φ = Ψ−1f into ITSE.

• Consequences of importance sampling:

1. The term in the ITSE involving potential U(R) is replaced by a term involving the
local energy EL(R), which is relatively uniform. Makes branching DMC algorithm
stable.

2. Configurations are distributed according to f = ΦΨ rather than Φ. More useful.
3. Fixed-node approximation is introduced (see later).



Importance-Sampled Imaginary Time Schrödinger Equation

• Without the last term on the LHS, the ISITSE is a Fokker–Planck equation:

−1

2
∇2f +∇ · [Vf ] = −∂f

∂t
.

• This equation describes the time-evolution of the density of a set of “particles”
undergoing random diffusion in a 3N -dimensional fluid of velocity field V.

• Without the first two terms on the LHS, the ISITSE is a rate equation:

[EL − ET ] f = −∂f
∂t
.

• Gives an exponential increase or decrease in the density of “particles” at each point
in the 3N -dimensional configuration space.



Dirac Notation for Position and Momentum

• Position basis: |R〉. NB, 〈R′|R〉 = δ(R−R′).

• State vector: |f〉.

• Spatial wave function: f(R) = 〈R|f〉.

• Position operator is defined such that R̂|R〉 = R|R〉.

• Momentum basis: |P〉 = (2π)−3N/2
∫

exp(iR ·P)|R〉 dR. NB, 〈P′|P〉 = δ(P−P′).

• Momentum operator is defined such that P̂|P〉 = P|P〉.

• 〈R|P〉 = exp(iP ·R)/(2π)3N/2. Hence ∇R〈R|P〉 = iP〈R|P〉 = i〈R|P̂|P〉.

• Completeness:
∫
|R〉〈R| dR =

∫
|P〉〈P| dP = 1.



Fokker–Planck Operator

• Let V(R̂)|R〉 = V(R)|R〉 be the drift-velocity operator.

• The first two terms in the ISITSE can be written as

−1

2
∇2f(R) +∇ · [V(R)f(R)] = −1

2
∇2

∫
〈R|P〉〈P|f〉 dP

+∇ ·
∫
〈R|P〉〈P|V(R̂)|f〉 dP

=
1

2

∫
〈R|P̂2|P〉〈P|f〉 dP

+ i

∫
〈R|P̂|P〉 · 〈P|V(R̂)|f〉 dP

=
1

2
〈R|P̂2|f〉+ i〈R|[P̂ ·V(R̂)]|f〉

= 〈R|F̂ |f〉,

where F̂ = (1/2)P̂2 + iP̂ ·V(R̂) is the Fokker–Planck operator.



Green’s Function of ISITSE

• ISITSE in integral form:

f(R, t+ τ) =

∫
G(R← R′, τ)f(R′, t) dR′,

where the Green’s function G(R← R′, t) is the solution of the ISITSE satisfying the
initial condition G(R← R′, 0) = δ(R−R′).

• [F̂ +EL(R̂)−ET ] exp[−t(F̂ +EL(R̂)−ET )] = −(∂/∂t) exp[−t(F̂ +EL(R̂)−ET )].

• So, the Green’s function of the ISITSE is

G(R← R′, τ) = 〈R|e−τ(F̂+EL(R̂)−ET )|R′〉

' 〈R|e−τ(EL(R̂)−ET )/2e−τF̂e−τ(EL(R̂)−ET )/2|R′〉,

= e−τ(EL(R)−ET )/2〈R|e−τF̂ |R′〉e−τ(EL(R′)−ET )/2.

• The error in the approximation is O(τ3) (proof: Taylor-expand the exponentials).



Normal Ordering

• Normal ordering: in any term of an operator, bring all P̂ operators to the left of all
R̂ operators (as if they commuted).

• Notation: : Â : is the normal-ordered version of Â.

• Note that : F̂ := F̂ , so

: exp(−τF̂ ) := 1− τF̂ +O(τ2) = exp(−τF̂ ) +O(τ2).



Drift–Diffusion Green’s Function

〈R| : exp(−τF̂ ) : |R′〉 =

∫
〈R|P〉〈P| : exp[−τ(P̂2/2 + iP̂ ·V(R̂))] : |R′〉 dP

=

∫
〈R|P〉 exp[−τ(P2/2 + iP ·V(R′))]〈P|R′〉 dP

=

∫
exp[iP · (R−R′)]

(2π)3N
exp[−τ(P2/2 + iP ·V(R′))] dP

=
1

(2πτ)3N/2
exp

(
−|R−R′ − τV(R′)|2

2τ

)
.

• The last line is the Langevin or drift–diffusion Green’s function, describing diffusion
in a fluid of constant velocity field V(R′).

• Physically, the approximation of using the normal-ordered Green’s function is
equivalent to assuming the drift velocity is constant between R and R′.

• NB, 〈R| exp(−τF̂ )|R′〉 = 〈R| : exp(−τF̂ ) : |R′〉+O(τ2).



DMC Green’s Function

G(R← R′, τ) = 〈R|e−τF̂ |R′〉 exp
(
−τ

2
[EL(R) + EL(R′)− 2ET ]

)
= 〈R| : e−τF̂ : |R′〉 exp

(
−τ

2
[EL(R) + EL(R′)− 2ET ]

)
+O(τ2)

≈ GD(R← R′, τ)GB(R← R′, τ) ≡ GDMC(R← R′, τ).

• Drift–diffusion Green’s function GD describes the evolution of the density of randomly
diffusing “particles” in a 3N -dimensional fluid of constant velocity field V(R′).
Equivalent to diffusion in velocity field V(R) if the time step τ is sufficiently small.

• Branching factor GB is the solution of the ISITSE without the first two terms on the
LHS; GB represents exponential growth/decay in density of “particles” at each point
in config. space.

• The DMC Green’s function therefore describes the evolution of the density of a set
of “particles” drifting, diffusing and breeding or dying in a 3N -dimensional space.



Propagation Over a Macroscopic Length of Imaginary Time

Green’s function for a macroscopic length of imaginary time Mτ :

G(R← R′,Mτ) = 〈R|e−Mτ(F̂+ÊL−ET )|R′〉

=

∫
· · ·
∫
〈R|e−τ(F̂+ÊL−ET )|R′′〉

· · · 〈R′′′|e−τ(F̂+ÊL−ET )|R′〉 dR′′ . . . dR′′′ +O(Mτ3)

=

∫
· · ·
∫
G(R← R′′, τ)

· · ·G(R′′′ ← R′, τ) dR′′ . . . dR′′′ +O(Mτ3)

=

∫
· · ·
∫
GDMC(R← R′′, τ)

· · ·GDMC(R′′′ ← R′, τ) dR′′ . . . dR′′′ +O(Mτ2).

The approximation to the Green’s function over a finite interval can be made arbitrarily
accurate by dividing the interval into sufficiently small slices of imaginary time.



Time-Step Error in Mixed Wave Function

• Use the DMC Green’s function to propagate f to large imaginary time [where
f(R, t) = φ0(R)Ψ(R)] using a finite, small time step τ :

f(R, t) =

∫
G(R← R′, t)f(R′, 0) dR′,

where the propagation is carried out in numerous short steps using GDMC.

• The use of a finite time step continually introduces errors, even as the evolution in
time projects out the ground-state component.

• Let f = φ0Ψ + ∆.

– Error in GDMC per time step is O(τ2), so error ∆ in f is introduced at rate O(τ).
– Error is removed at a rate that is roughly −∆/Tcorr, where Tcorr is the correlation

period in imaginary time (see statistics talk).
– In steady state, the rates balance. Hence ∆ ∼ Tcorrτ .

• The error in the mixed distribution is O(τ).



Detailed Balance Condition

• Green’s function for the ITSE: 〈R| exp[−τ(Ĥ − ET )]|R′〉.

• Multiply by a constant [Ψ−1(R′)] times Ψ(R) to obtain the Green’s function for the
ISITSE:

G(R← R′, τ) = Ψ(R)〈R| exp[−τ(Ĥ − ET )]|R′〉Ψ−1(R′).

• exp[−τ(Ĥ − ET )] is Hermitian and the Green’s functions are real, so

Ψ2(R′)G(R← R′, τ) = Ψ2(R)G(R′ ← R, τ).

• Approximation that V(R) is constant between R′ and R violates this detailed-balance
condition for finite time steps.

• Can re-impose this important condition using an accept/reject step (see later).



Propagation of Configuration Population (I)

• At any given moment in a DMC simulation, f is represented by a population of
“configurations” or “walkers” in configuration space:

f(R, t) =

〈∑
α

wαδ(R−Rα)

〉
,

where Rα is the position of configuration α and wα is its weight and the angled
brackets are an ensemble average.

• Ensemble averaging commutes with differentiation, etc.

• Substitute the above expression for f into the integral form of the ISITSE to find the
distribution of configurations one time step τ (dtdmc) later:

f(R, t+ τ) =

〈∑
α

wαGB(R← Rα, τ)GD(R← Rα, τ)

〉
.



Propagation of Configuration Population (II)

• It is clear that the Green’s functions can be treated as transition-probability
densities; ensemble average then has the correct behaviour.

• To simulate this, configurations drift by τV(Rα) and
diffuse (are displaced by a random vector, Gaussian-
distributed with variance τ). Branching factor is then
absorbed into a new weight for each configuration.

• Calculation has two phases:

– Make a number of moves before energy data are accumulated, to allow excited-state
components of Φ to die away: equilibration phase.

– Then continue to propagate configurations, but gather energy data: statistics-
accumulation phase.



Drift, Diffusion and the Accept/Reject Step (I)

• Drift–diffusion: each electron i in each configuration α is moved from r′i(α) to ri(α)
according to

ri = r′i + χ + τvi(r1, . . . , ri−1, r
′
i, . . . , r

′
N),

where χ is a three-dimensional vector of Gaussian-distributed numbers with variance
τ and zero mean and vi(R) denotes those components of the total drift velocity
V(R) due to electron i.

• Hence each electron i is moved from r′i to ri with transition-probability density

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N)

=
1

(2πτ)3/2
exp

(
[ri − r′i − τvi(r1, . . . , ri−1, r

′
i, . . . , r

′
N)]2

2τ

)
.

• Transition-probability density for move from R′ = (r′1, . . . , r
′
N) to R = (r1, . . . , rN)

is probability that each electron i moves from r′i to ri.



Drift, Diffusion and the Accept/Reject Step (II)

• Transition-probability density for the configuration move:

T (R← R′) =

N∏
i=1

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N).

• In the limit τ → 0, the drift velocity V is constant over the configuration move.
Hence

T (R← R′) = GD(R← R′, τ),

so the drift–diffusion process is indeed described by the drift–diffusion Green’s
function.

• For finite time steps, the approximation that the drift velocity is constant violates the
detailed-balance condition.

• Enforce detailed balance using a Metropolis-style accept/reject step.



Drift, Diffusion and the Accept/Reject Step (III)

• Electron-by-electron algorithm: a move of electron i is accepted with probability

min

{
1,
ti(r1, . . . , ri−1, r

′
i ← ri, r

′
i+1, . . . , r

′
N)Ψ2(r1, . . . , ri, r

′
i+1, . . . , r

′
N)

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N)Ψ2(r1, . . . , ri−1, r′i, . . . , r

′
N)

}

• Configuration-by-configuration algorithm: a move of all N electrons is accepted with
probability

min

{
1,
T (R′ ← R)Ψ2(R)

T (R← R′)Ψ2(R′)

}
• In either case, the RMS distance diffused in configuration space over one time step is√

3Nτp, where p is the acceptance probability.

• For a given time step, the electron-by-electron algorithm is more efficient, because
the acceptance probability is higher.

• CASINO can perform either e-by-e or c-by-c calculations (choose with the
dmc method keyword), but the former are clearly preferable in general.



Branching

• After all the electrons have attempted to move, the branching factor of configuration
α is calculated as:

Mb(α) = GB(Rα ← R′α, τ) = exp

[(
−1

2
[EL(Rα) + EL(R′α)] + ET

)
τ

]
,

where R′α and Rα are the electron coordinates before and after the complete
drift–diffusion step.

• The “weight” of configuration α should be increased by a factor of Mb(α) (on
average).

• “Unweighted” DMC: number of copies of configuration α in next time step is

M(α) = int[η +Mb(α)],

where η is a random number drawn from a uniform distribution on [0, 1].

• Expected number of daughter configurations after branching: 〈M(α)〉 = Mb(α).



Adjusting the Reference Energy

• Let Ebest be the best available estimate of the ground-state energy.

– During equilibration Ebest is the average configuration local energy over the last
ebest av window iterations.

– During statistics accumulation, Ebest is the average local energy since the start of
statistics accumulation.

• The branching factors depend exponentially on the reference energy ET .

• ET is adjusted so that the total population does not deviate too much from a target
population M0 (dmc target weight).

• Specifically, the reference energy is adjusted so that the population attempts to return
to M0 after 1/cT a.u. of imaginary time (or one time step, if that is greater).



Population-Control Bias (I)

• The DMC Green’s function was derived under the assumption that ET is constant.
Adjusting ET leads to population-control bias.

– Suppose the local energies are mostly less than E0. The population will try to
increase. But the population-control mechanism counteracts this.

– Suppose the local energies are mostly greater than E0. The population will try to
decrease. But the population-control mechanism counteracts this.

• In either case, the average local energy increases as a result. Population control
introduces a positive bias into the DMC energy.

• Since fluctuations in the average local energy and branching factor are proportional
to 1/

√
M0, population-control bias goes as 1/M0.

• Population-control bias increases very slowly as the system-size increases.

• Improve the trial wave function to reduce population-control bias.



Population-Control Bias (II)
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Wave-Function Antisymmetry

• We want to find the Fermionic (antisymmetric) ground state.

• Lowest-energy wave function is the Bosonic (symmetric) ground state.

• Therefore we have to constrain DMC to preserve antisymmetry.

• Constraint is “automatic” in the importance-sampled DMC algorithm:

– If Φ and Ψ have different nodal surfaces, there must exist regions where f is
negative.

– Our algorithm is based on interpreting f as a probability density.
– Can never have a negative f in our algorithm.
– So we cannot describe a change in the nodal surface of Φ.

• By importance sampling and not permitting weights to become negative, we have
introduced the fixed-node approximation.



Fixed-Node Approximation (I)

• The nodes of Ψ divide configuration space into nodal pockets.

– Within each nodal pocket λ we solve the Schrödinger equation subject to the
boundary condition that the wave function Φλ is zero outside the pocket.

– So ĤΦλ = Eλ0 Φλ + δλ, where δλ are δ functions at the pocket boundary arising
from the discontinuity of the derivative of Φλ and Eλ0 is the pocket energy.

• Consider antisymmetric wave function Φ̃λ(R) = ÂΦλ(R) ≡
∑
P̂ (−1)pP̂Φλ(R),

where {P̂} permute like-spin coordinates and {p} are the corresponding parities.

• Variational principle:

EF0 ≤
〈Φ̃λ|Ĥ|Φ̃λ〉
〈Φ̃λ|Φ̃λ〉

=
〈Φλ|ÂĤÂ|Φλ〉
〈Φλ|Â2|Φλ〉

=
〈Φλ|Â2Ĥ|Φλ〉
〈Φλ|Â2|Φλ〉

= Eλ0 ,

so each pocket energy is greater than the Fermion ground-state energy EF0 .

– We have used the fact that Â is Hermitian and that it commutes with Ĥ, and that
the contribution due to δλ vanishes because Φ̃λ = 0 at nodes.



Fixed-Node Approximation (II)

• Within each nodal pocket λ, the mixed estimator gives energy Eλ0 .

• Configuration populations in high-energy pockets tend to die out, so the DMC energy
is min{Eλ0 } ≥ EF0 .

• Hence the fixed-node DMC energy exceeds the Fermion ground-state energy,
becoming equal in the limit that the nodal surface is exact.

• FNA is the only fundamental approximation in DMC. The error in the DMC energy
is second order in the error in the nodal surface.

• Drift velocity diverges at nodal surface, carrying away configurations.

• At finite time steps, configurations can drift/diffuse across surface: source of time-step
bias.



Fixed-Node Approximation (III)

• The FNA with an antisymmetric trial wave function gives us a variational principle
for the lowest-energy antisymmetric eigenstate.

– Likewise, the FNA with a trial wave function of any given symmetry gives us a
variational principle for the lowest-energy state with that symmetry.

• DMC always gives the energy of an excited state exactly if the nodal surface is exact
for that state.

– Hence we can use fixed-node DMC to calculate excited-state energies by using an
appropriate trial wave function.

– So we can calculate excitation energies (points on the band structure for periodic
systems) via differences in total energy.

– The variational principle does not hold for excited-state energies in general.



Mixed Estimator of the Energy

• Fixed-node ground state satisfies Ĥφ0 = E0φ0. Hence

E0 =
〈φ0|Ĥ|Ψ〉
〈φ0|Ψ〉

=

∫
φ0ΨEL dR∫
φ0Ψ dR

= 〈EL〉φ0Ψ.

• After equilibration, the DMC configuration population has the mixed distribution
φ0Ψ.

• Average the local energies of the configurations generated in the statistics-
accumulation phase to obtain an estimate of E0.

• At each iteration, the local energies are averaged over the configuration population
(weighted by the branching factors) and written to dmc.hist, along with the total
weight.



Time-Step Bias (I)

• The O(τ) error in the mixed distribution gives an O(τ) time-step bias in the mixed
estimator.

– Time-step bias vanishes in the limit of zero time step and is linear for sufficiently
small time steps.

– Time-step bias does not get more severe in larger systems.
– The bias is greatly reduced if the trial wave function is good.

• Must either (i) use a sufficiently small time step that the bias is negligible or (ii)
perform simulations at different time steps and extrapolate to zero time step.

– The EXTRAPOLATE TAU utility exists to help you do the latter.

• Time-step biases may cancel out of energy differences, but one must not assume this
without checking.



Time-Step Bias (II)
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Time-step bias in a paramagnetic Fermi fluid with rs = 4 a.u. No Jastrow factor was
used, except where indicated by “S-J”.



Choosing a DMC Time Step

• Always check for time-step bias by performing simulations at different time steps.

• First guess at time step: one fiftieth of optimised VMC time step.1

• The RMS distance diffused by each electron each time step (
√

3τ) should be ≤ the
smallest length scale.

• For “typical” time steps in “typical” systems, local energies separated by 1024
iterations can typically be regarded as independent, i.e., the block length in REBLOCK
can be chosen to be 1024.

• Typically need tens of thousands of steps for equilibration and statistics accumulation.

• RMS distance diffused by each electron over equilibration period (
√

3Neqτ , where
Neq is number of equilibration iterations) should be ≥ longest length scale in problem.

1 By default, the VMC time step is optimised to ensure that ∼ 50% of moves are accepted.



Population-Explosion Catastrophes (I)

• Configuration-population explosions are liable to occur whenever the local energy
shows singular behaviour.

• Large local energies can invalidate the short-time approximation and the branching
factor can diverge.

• Usual signature: unphysically low average configuration energy, accompanied by a
jump in the population.

• CASINO halts if the population on a processor exceeds 5× dmc target weight/P ,
where P is the number of processors.



Population-Explosion Catastrophes (II)

0 250 500 750 1000 1250
Iteration

-7.5

-7

-6.5
A

v
er

ag
e 

lo
ca

l 
en

rg
y

 (
a.

u
.)

Average local energy during a DMC simulation of SiH4. Dashed line shows DMC
ground-state energy as found using simulations with a much smaller time step.

Electron–nucleus cusp condition not satisfied at hydrogen nuclei.



Population-Explosion Catastrophes (III)
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Nuclear Persistent-Electron Catastrophes (I)

• If the electron–nucleus cusp condition isn’t satisfied, the local energy diverges as r−1

when an electron approaches a nucleus.

• The divergence is negative, causing a positive divergence of the branching factor.
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Local energy as electron moves through a bare nucleus. Note that local energy does
not change sign at divergence, unlike divergence at a node.



Nuclear Persistent-Electron Catastrophes (II)

• Probability density of electrons being at a nucleus is finite.

• Accept/reject step tends to prevent electron moves away from the nucleus, so
electrons may become trapped.

• Possible for simulation to proceed with a population of configurations containing a
“persistent” electron, but there will be a large negative bias.

• If the multiplicity is sufficiently high, an unbounded population explosion occurs.

• Use a trial wave function satisfying electron–nucleus cusp conditions: nuclear
persistent-electron catastrophes are eliminated.

• E.g., if all-electron calculations are performed with a Gaussian basis set,
cusp correction should be T (as it is by default).



Nonlocal Pseudopotentials

• Nonlocal pseudopotentials are awkward in DMC: when we derived the DMC Green’s
function we tacitly assumed that the potential was local.

• Locality approximation: replace nonlocal pseudopotential V̂NL by local operator
V̂LA(R) = Ψ−1(R)V̂NLΨ(R).

• Clear that 〈V̂LA〉VMC = 〈Ψ|V̂LA|Ψ〉/〈Ψ|Ψ〉 = 〈Ψ|V̂NL|Ψ〉/〈Ψ|Ψ〉 = 〈V̂NL〉VMC.

• Likewise, 〈φLA|V̂LA|Ψ〉/〈φLA|Ψ〉 = 〈φLA|V̂NL|Ψ〉/〈φLA|Ψ〉, where φLA is the ground
state in the locality approximation.

• However, 〈φLA|V̂NL|Ψ〉/〈φLA|Ψ〉 6= 〈φNL|V̂NL|Ψ〉/〈φNL|Ψ〉, where φNL is the actual
ground state (for the nonlocal pseudopotential).

• Can show that error in 〈φLA|V̂NL|Ψ〉/〈φLA|Ψ〉 is second order in error in Ψ. However,
DMC energies in locality approximation are not guaranteed to exceed GS energy.

• The use of the locality approximation can lead to catastrophic behaviour.



T-Move Scheme (I)

• Split nonlocal pseudopotential into a part with negative matrix elements w.r.t. position
basis and a part with positive matrix elements.

– Simulate a process corresponding to negative elements (so-called T-moves).
– Treat positive matrix elements within locality approximation.

• Restores property that DMC energy is greater than the ground-state energy.

• Tends to move electrons away from nodes on nonlocal integration grid: eliminates
instabilities.

• Set use tmove to T to use the T-move scheme.



T-Move Scheme (II)
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If You Encounter a Catastrophe. . . (I)

• If you encounter catastrophic behaviour:

1. Check that your wave function satisfies the Kato cusp conditions by using qmc plot
to examine the local energy as an electron is moved through each nucleus2.

2. Use the jastrow plot block to examine the Jastrow factor. The u term should
increase monotonically to zero.

3. Consider using the T-move scheme for nonlocal pseudopotentials.
4. Consider using a smaller time step.

• If you still encounter occasional catastrophic behaviour, you can set an upper limit
on the population (dmc trip weight).

• CASINO will jump back to an earlier point in the simulation and change the random
number sequence if the upper limit is exceeded.

• Choose the upper limit to be slightly higher than the maximum population that would
be encountered in an ordinary fluctuation.

2 Type casinohelp qmc plot to find out how to use qmc plot.



If You Encounter a Catastrophe. . . (II)
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Practical Advice (I)

To carry out successful DMC calculations:

• Test for time-step bias by performing simulations at different time steps (for a
representative system).

– If necessary, remove time-step bias by extrapolation to zero time step.
– “Typical” DMC time step in a pseudopotential calculation: τ ≈ 0.01 a.u.
– “Typical” DMC time step in an all-electron calculation for first-row atoms: τ ≈

0.001 a.u.
– Time steps vary widely, especially in HEGs. Make sure the distance diffused in one

time step
√

3τ is smaller than the shortest relevant length scale.
– In general, a reasonable first guess at the DMC time step is about one fiftieth of

the optimised VMC time step.
– Time-step biases in energy differences are often much smaller than the biases in

the individual energies: can often exploit this cancellation of bias to use a relatively
large time step.



Practical Advice (II)

• Ensure the equilibration period is sufficiently long.

– Ensure the RMS distance diffused over the equilibration period
√

3Neqτ is larger
than the longest relevant length scale.

– Typically use several thousand or tens of thousands of equilibration moves.

• Use a sufficiently large target population.

– Typically use a target population of more than 1,000 configurations.
– Test for population-control bias by halving or doubling the population for a

representative calculation.

• Use a highly optimised trial wave function.

– Statistical error bars are reduced; time-step and population-control biases are
reduced; locality errors are reduced; and (if backflow or multideterminant wave
functions are used) fixed-node errors are reduced when the wave function is
well-optimised; the chance of encountering population-control problems is reduced.

– Make sure the Kato cusp conditions are satisfied.



Practical Advice (III)

• Ensure that your statistical error bars are an order of magnitude smaller than the
energy difference you are trying to resolve.

– If error bars were exact and underlying statistics were Gaussian then one in three
points would be out by one error bar, one in twenty would be out by two error
bars, etc.

– For a given system, error bars fall off as the square root of the amount of data you
gather. Can easily estimate the computational requirements for achieving a given
error bar by performing a short test calculation.

• Use backflow with caution.

– Although backflow significantly lowers the total energy, the effect on energy
differences may be insignificant.

– If you are comparing results with different backflow quality, this biases the DMC
energy differences.


