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ABSTRACT 
 
Numerous studies have been targeting the problem of 
scheduling divisible workloads in distributed computing 
environments. The UMR (Uniform Multi-Round) 
algorithm stands out from all others by being the first 
close-form optimal scheduling algorithm. However, 
present algorithms, including the UMR, do not pay due 
attention to optimizing the set of workers that get selected 
to participate in processing workload chunks. In addition 
to the absence of a good resource selection policy, the 
UMR relies primarily in its computation on the CPU 
speed and overlooks the role of other key parameters such 
as network bandwidth. In this paper, we propose an 
extended version of UMR, called UMR2, that overcomes 
these limitations and adopts a worker selection policy that 
aims at minimizing the makespan. We, theoretically and 
experimentally, show that UMR2 is superior to UMR, 
specifically in a WAN computing platform such as the 
Grid.  
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1.  Introduction 
 
By definition, a divisible load is “a load that can be 
partitioned into any arbitrary number of load fractions” 
[1]. This kind of workload arises in many domains of 
science such as protein sequence analysis, simulation of 
cellular micro physiology, and more [2], [3]. Per the 
Divisible Load Theory [1], the scheduling problem is 
identified as “Given an arbitrary divisible workload, in 
what proportion should the workload be partitioned and 
distributed among the workers so that the entire workload 
is processed in the shortest possible time.” Any 
scheduling algorithm should address the following issues: 
• Workload Partitioning Problem. This problem is 

concerned with the method by which the algorithm 
should divide the workload in order to dispatch to 
workers.  

• Resource Selection Problem. This problem is 
concerned with how to select the best set of workers 

that can process the workload partitions such that the 
makespan is minimal.  

First multi-round algorithm MI, introduced by Bharadwaj 
[1], utilizes the overlapping between communication and 
computation processes at workers. In MI algorithm the 
number of rounds is fixed and predefined. It overlooks 
communication and computation latencies. Beaumont [4] 
proposes a multi round scheduling algorithm that fixes the 
execution time for each round. This enabled the author to 
give analytical proof of the algorithm's asymptotic 
optimality. Yang et al. [2], through their UMR algorithm, 
designed a better algorithm that extends the MI by 
considering latencies. However, in UMR, the size of 
workload chunks delivered to workers is solely calculated 
based on worker’s CPU power; the other key system 
parameters, such as network bandwidth, are not factored 
in. 
 
One apparent shortcoming in many scheduling algorithms 
[1], [2], [4] is the abandon of designing a solid selection 
policy for generating the best subset of available workers. 
Part of the reason is that the main focus of these 
algorithms is confined to the LAN environment, which 
makes them not perfectly suitable for a WAN 
environment such as the Grid [3]. In the Grid, resource 
computing (workers) join and leave the computing 
platform dynamically. Unlike other algorithms, we cannot 
assume in the Grid that all available resources, which may 
be in thousands, must participate in the scheduling 
process. The more recent algorithms discussed in [2] very 
tersely allude to this problem by proposing primitive 
intuitive solutions that are not back up by any analytical 
model.  
 
In this paper, we propose a new scheduling algorithm, 
UMR2 (inspired by UMR [2]), which is better and more 
realistic. UMR2 is superior to UMR with respect to two 
aspects. First, unlike UMR that relies primarily in its 
computation on the CPU speed, UMR2 factors in several 
other parameters, such as bandwidth and all types of 
latencies which renders the UMR2 a more realistic model. 
Second, UMR2 is equipped with a worker selection 
policy that finds out the best workers. As a result, our 
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experiments show that our UMR2 algorithm outperforms 
previously proposed algorithm including the UMR. The 
rest of this paper is organized as follows. Section 2 briefly 
describes the computation platform. Section 3 and 4 
describe the UMR and UMR2 algorithms, respectively. 
Section 5 analytically shows how UMR2 is superior to 
UMR. Section 6 experimentally validates our work and 
shows how UMR2 outperforms UMR and other similar 
scheduling algorithms. Section 7 concludes the paper.   
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 3.2 Induction Relation on Chunk Sizes 2.  The Heterogeneous Computing Platform  
 To fully utilize the network bandwidth, the dispatching of 

the master and the computation of Wn should finish at the 
same time  

Let us consider a computation Grid in which a master 
process has access to N worker processes and each 
process runs in a particular computer. The master can 
divide the total load Ltotal into arbitrary chunks and 
delivers them to appropriate workers. The following 
notation will be used throughout this paper: 

roundj = φ j (round0 - η) + η (3)
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• Wi: worker number i. 
• N: total number of available workers. 
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• n: number of workers that are actually selected  
• m: the number of rounds. (5)
• chunkji : the fraction of total workload that the master 

delivers to Wi in round j (i=1,..,n ; j=1,..,m). 
• Si: computation speed of the worker i (flop/s). 

3.3 Determining the First Round Parameters • Bi: the data transfer rate of the connection link 
between the master and Wi (flop/s).  

Since the objective of the UMR is to minimize the 
makespan of the application, we can write:  • Tcompji: computation time required for Wi to process 

chunkji . F(m, round0) = • cLati : the fixed overhead time (second) needed by Wi 
to start computation. ∑∑
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• nLati : the overhead time (second) incurred by the 
master to initiate a data transfer to Wi. We denote 
total latencies by Lati = cLati + nLati . 

At the same time, we also have the constraint that the 
chunk sizes sum up to the total workload: 

• Tcommji: communication time required for master to 
send chunkji  to Wi  ( ) ( ) 0

1
1, 00 =−
−
−
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Tcommj,i = nLati + chunkj,i / Bi ; 
Tcompj,i  = cLati  + chunkj,i / Si ; This optimization problem can be solved by the  

Lagrangian method [2], [5].  • roundj: the workload dispatched during round j 
roundj = chunkj,1 + chunkj,2 + ... + chunkj,n  

 3.4 Worker Selection Policy   
3.  The UMR Algorithm: Overview  

UMR sorts workers according to Si/Bi in increasing order, 
and selects the first n workers out of the original N 
workers such that:   S1 / B1 + S2 / B2 + … + Sn / Bn < 1 

 
In the subsequent sections, we sketch the key concepts in 
the UMR algorithm, referring the reader to [2] for more 
details. Next, we explain how the UMR partitions its load 
into chunks (Section 3.1), how it decides on the size of 
each chunk (Section 3.2), what are the initial parameters 
for the first round (Section 3.3), and outline the simple 
worker selection policy adopted by the UMR. 

Furthermore, UMR requires that, the computation-
communication ratio Bi/Si be larger than the number of 
workers n:  Bi / Si > n (∀i =1,2,...,N) (7)
 
4.  UMR2: The New Algorithm  

  
3.1 Load Partitioning Policy In this section, we present our UMR2 algorithm. We 

explain how the UMR2 partitions its load into chunks 
(Section 4.1), how it decides on the size of each chunk 
(Section 4.2), and the determination of initial parameters 
for the first round (Section 4.3). The key concept in the 
UMR2 algorithm, which is the worker selection policy, is 
described in the last Section 4.4.  

 
UMR adopts a load partition policy that ensures that each 
worker spends the equal CPU time like others through a 
round; network bandwidth is not taken into account:  

cLati + chunkji / Si = constj 
so we derive 



4.1 Load Partitioning Policy 
 
Unlike the UMR, which considers the CPU power only, 
our algorithm considers both of the CPU power and the 
network bandwidth when partitioning the load:  

cLati + chunkji /Si + nLati + chunkji / Bi = constj 
We set:   Ai = Bi Si / (Bi + Si) 
so we have  chunkj,i = αi roundj + βi     (8) 
where  αi = Ai / (A1 + A2 + ... + An) 
 βi = αi[A1(Lat1-Lati) + ... + An(Latn - Lati)]    (9) 
Expressions (8) and (9) show the equal role that CPU 
power (Si) and bandwidth (Bi) play. This renders the 
UMR2 a more realistic algorithm and therefore, a better 
one with respect to performance.  
 
4.2 Induction Relation on Chunk Sizes 4.2 Induction Relation on Chunk Sizes 
  
Similar to the induction relation derived in section 3.2 for 
the UMR, we have: 
Similar to the induction relation derived in section 3.2 for 
the UMR, we have: 

roundj = θ j (round0 - η) + η roundj = θ j (round0 - η) + η 
where where 
θ = Bn / (Bn + Sn) /[S1/(B1 + S1) + ... + Sn/(Bn + Sn)]   (11) θ = Bn / (Bn + Sn) /[S1/(B1 + S1) + ... + Sn/(Bn + Sn)]   (11) 
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4.3 Determining the First Round Parameters 
 
To find out round0 and m of UMR2 we have to minimize 
the makespanUMR2 : F(m, round0) =  

∑∑
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subject to:  
G(m, round0) = mη +(round0 - η)(1- θm) /(1- θ) – Ltotal =0 
After obtaining m and round0 by using Lagrangian 
method, we can obtain the value of roundj and chunkji  
using (10) and (8), respectively. 
 
4.4 Worker Selection Policy  
 
Let V denote the original set of N available workers 
(|V|=N). In this subsection we explain our resource 
selection policy that aims at finding the best subset V* 
(V*⊆V, |V*|=n) that minimizes the makespan.  
Algorithm 1: Resource_Selection(V) 
Begin 

Search Wn∈V such that:  
Bn/(Bn+Sn) ≤ Bi/(Bi+Si)   ∀Wi∈V 

V*1 = Branch_and_Bound(V); 
V*2 = Greedy(V, “θ <1”); V*3 = Greedy(V, “θ =1”); 
select V*∈{V*1, V*2, V*3} such that  

 m(V*)= min{m1(V*1), m2(V*2), m3(V*3)} ;  
return (V*);  

End 
If Wi denotes worker i, then Wn denotes the last worker 
that receives load chunks in a round, and W1 denotes the 
first worker that receives chunks in a round. Our 
selection, as sketched in Algorithm 1, starts with finding 

the last worker (Wn) that should receive chunks in a 
round. Therefore, V* is initialized by {Wn}. Afterwards, 
the selection algorithm, depending on θ, examines three 
cases using different search algorithms aiming at finding 
the best algorithm that adds more workers to V*. After 
obtaining the three candidate V* sets, the algorithm 
chooses the one that produces the minimum makespan. 
When θ =1, and by using (12), we compute the makespan 
as follows: makespan UMR2 =  
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and since m (the number of rounds) is usually large (in 
our experiments, m is in hundreds), we can write: 

 if θ <1 
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if  θ >1 

if θ <1 
 We evaluate the accuracy of this approximation by 
experiments mentioned in sub section 6.1 
 
When θ >1 and by substituting this term into (12) we get 
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When θ <1 and by substituting the above term into (12) 
we get makespanUMR2 = 
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Based on the above analysis, we have three selection 
policies for generating V*: 
1. Policy I (θ >1): this policy aims at reducing the total 

idle time by progressively increasing the load 
processed in each round (i.e., roundj+1 > roundj ∀j 
=0,1,...,m-1). 

2. Policy II (θ <1): this policy aims at maximizing the 
number of workers that can participate by 
progressively decreasing the load processed in each 
round (i.e., roundj+1 < roundj ∀j =0,...,m-1). 

3. Policy III (θ =1): this policy keeps the load processed 
in each round constant (i.e., roundj+1 = roundj ∀j = 
0,1,...,m-1). As shown in Algorithm 1, three policies 
will be examined in order to choose the one that 
produces the minimum makespan. 

Next, we discuss each policy in more detail.  
 
4.4.1. Policy I (θ >1) 
 



From (14), we can see that under this policy, V* is the 
subset that maximizes the sum  

4.4.3. Policy III (θ =1) 
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Under this policy, we need to find V* that minimizes the 
following makespan function 

∑∑
∈∈ ++

=
**

3 *)(
Vi ii

ii

Vi ii

i

SB
SB

SB
SVm  subject to θ >1 or  

∑
∈ +

<
+*Vi nn

n

ii

i

SB
B

SB
S

 (16)
subject to θ =1 or

( )
1

*

=

+
+ ∑

∈Vi ii

i
nn

n

SB
SSB

B
 

One can observe that this is a Binary Knapsack [7] 
problem that can be solved using the Branch-and-Bound 
algorithm [7].  It is noticeable that m3() is the same as m2() (Policy II). 

However, the two objective functions differ with respect 
to their constraints. Therefore, we can use the same 
Greedy search algorithm explained earlier with the 
exception that the termination condition should be θ =1 
(instead of θ <1). 

 
4.4.2. Policy II (θ <1) 

   
From (15), we can see that under this policy, V* is the 
subset that minimizes 
From (15), we can see that under this policy, V* is the 
subset that minimizes 
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5.  UMR2 vs. UMR: Analytical Comparison 
 subject to θ <1 or In this section we analytically show how UMR2 is always 
better than UMR through the following lemmas.  ∑
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LEMMA 2. If the UMR2 and UMR algorithms end up with 
the same set of selected workers (V*) then makespanUMR2 
< makespanUMR 

To start with, we should initiate V* with the first worker, 
W0, that minimizes m2().   

Proof. If we sort the n workers of V* by Si/Bi in an 
increasing order: 

LEMMA 1. m2(V*) is minimum if V*={W0} such that B0 
≥Bi  ∀Pi ∈V.  

S1 / B1 < S2 / B2 < … < Sn / Bn < 1/n (18)Proof. Consider an arbitrary subset X⊆V, X = {P1, P2, ... 
Pr}. We have: We can write 

Bn / Sn > n ⇒ Bn / (Bn + Sn) > n.Sn / (Bn + Sn) (19)
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            Sn / (Bn + Sn) > Si / (Bi + Si)  (∀i = 1,2,...,n)      (20) 
From (19) and (20) we derive 
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In the case of θ >1, makespanUMR2 is computed by (14)  
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 After adding W0 to V*, we should keep conservatively 

adding more workers until constraint (17) is satisfied. In 
fact, the next Wk that should be added to V* is the one that 
satisfies the following inequality: 

(21)

From (6) we derive: 
m2(V*∪{Wk}) ≤ m2(V*∪{Wj})  ∀Wj ∈V-V* 
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 The Greedy algorithm described below progressively adds 
more Pk until V* satisfies (17), i.e. until (θ <1). The run 
time of this search is O(n). 

From (18) we have Algorithm 2: Greedy(V, thetaCondition) 
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Begin 
Search Wn∈V: Bn/(Bn+Sn) ≤ Bi/(Bi+Si)    ∀Wi∈V 
Search W0:B0 ≥Bi (∀Wi∈V); V* ={Wn ,W0};V = V-V*;  

and since m (the number of rounds) is usually large (in 
our experiments, m is in hundreds), we can write: 

Repeat 
Search worker Wk satisfy 

1 + (1-φ) / (φ - φ m+1) ≈ 1  m2(V*∪{Wk}) ≤ m2(V*∪{Wj})         ∀Wj ∈V 
So we have V* = V*∪{Wk};  V = V-{Wk}; 
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Until thetaCondition; 
(22)return (V*); 

End 



From (18) we derive Table 2. The Absolute Deviation between the 
Experimental and Theoretical ⇒ Bn / (Bn + Sn) ≤ Bi / (Bi + Si) (∀i = 1,2,...,n)      

∑∑
== +

≤
+

⇒
n

i ii

ii
n

i
i

nn

n

SB
SBS

SB
B

11
 

nLat, cLat (s) D1 (%) D2 (%) D3 (%) 
1 3.15 2.42 3.34 

10-1 2.23 1.75 2.27 
10-2 1.51 0.92 1.94 
10-3 0.82 0.51 1.25 ( ) ∑∑
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And by considering (21) and (22) we derive: in Table 2. This confirms that the approximation 
assumptions adopted in our analysis are plausible. Table 1 
outlines the parameters that we used in our experiments. 

⇒ makespan UMR2 < makespan UMR         � 
LEMMA 3. In all cases, makespanUMR2 < makespanUMR 

Let us denote: Proof. If we denote: 
• MKe is the makespan obtained from the experiments. • A is the subset which chosen by UMR 
• MK1, MK2, MK3 are the makespans computed by 

formula (13), (14) and (15) respectively. • B  is the subset which chosen by UMR2  
• V1, V2, V3 is the subsets which chosen by UMR2 in 

3 cases: θ >1, θ = 1, θ <1, respectively 
• V1, V2, V3 is the subsets which chosen by UMR2 in 

3 cases: θ >1, θ = 1, θ <1, respectively 
• Di (i=1, 2, 3) is the absolute deviation between the 

theoretical makespan, MKi, and the experimental 
makespan MKe. Therefore: Using Lemma 2, we have Using Lemma 2, we have (23)

makespanUMR (A) > makespanUMR2 (A) makespanUMR (A) > makespanUMR2 (A) 
(%).100

e

ei
i MK

MKMK
D

−
=  i =1,2,3As discussed in Section 4.4.1, V1 is an optimal solution of 

the Knapsack system produced by the Branch-and-bound 
algorithm. So we have 

As discussed in Section 4.4.1, V1 is an optimal solution of 
the Knapsack system produced by the Branch-and-bound 
algorithm. So we have Table 2 summarizes the absolute deviations computed for 

different latencies. From these results we can make the 
following remarks:  

makespanUMR2 (A) ≥ makespanUMR2 (V1) makespanUMR2 (A) ≥ makespanUMR2 (V1) 
Because B is chosen by UMR2 by comparing V1, V2, V3 
so we have 
Because B is chosen by UMR2 by comparing V1, V2, V3 
so we have 

(24)

• The absolute deviation between the theoretical and the 
experimental makespan ranges from 0.5% to 3.1%, 
which is negligible.  

(25)makespanUMR2 (V1) ≥ makespanUMR2 (B) makespanUMR2 (V1) ≥ makespanUMR2 (B) 
From (23) (24) (25) we derive  From (23) (24) (25) we derive  
  makespanUMR (A) > makespanUMR2 (B)    �   makespanUMR (A) > makespanUMR2 (B)    � • We notice that  D2 < D1 < D3. The justification is that 

the absolute deviation (D) is proportional to the 
number of participating workers in a given selection 
policy. The more workers participate, the larger D 
becomes. As we recall that D2 represents the deviation 
caused by policy II (θ >1), which is the most 
conservative policy with respect to the number of 
workers allowed to participate. D3 represents the 
deviation caused by policy III (θ <1), which is the 
most relaxed policy with respect to the number of 
participating workers.   D1 of policy I (θ =1) falls in 
the middle with respect to the number of participating 
workers and according the observed deviation. 

  
6.  Experimental Results 6.  Experimental Results 
  
In order to evaluate UMR2 experimentally, we developed 
a simulator using the SIMGRID toolkit [6] which has 
been used to evaluate the original UMR algorithm. To 
evaluate the UMR2 algorithm, we used the same metrics  
(Table 4) and the same values of configuration parameters  
(Table 1) that were used to evaluate UMR. We conducted 
a number of experiments that aim at i) showing the 
validity of our approximation assumptions discussed in 
Section 4, and ii) showing that the UMR2 algorithm is 
superior to its predecessor multi-round algorithms, 
namely LP and UMR.  

In order to evaluate UMR2 experimentally, we developed 
a simulator using the SIMGRID toolkit [6] which has 
been used to evaluate the original UMR algorithm. To 
evaluate the UMR2 algorithm, we used the same metrics  
(Table 4) and the same values of configuration parameters  
(Table 1) that were used to evaluate UMR. We conducted 
a number of experiments that aim at i) showing the 
validity of our approximation assumptions discussed in 
Section 4, and ii) showing that the UMR2 algorithm is 
superior to its predecessor multi-round algorithms, 
namely LP and UMR.  

 
6.2. Comparison with Other Algorithms 

   
6.1. Validity of Approximation Assumptions 6.1. Validity of Approximation Assumptions We compare UMR2 with the most powerful scheduling 

algorithm, namely UMR [2], [8] and LP [4]. Table 3 
outlines the configuration parameters used in the 
simulation experiments. The performances of these 
algorithms have been compared with respect to three 
metrics:  

  
The experiments we conducted show that the absolute 
deviation between theoretically computed makespan, as 
The experiments we conducted show that the absolute 
deviation between theoretically computed makespan, as 
analyzed in Section 4, and the makespan observed 
through the simulation experiments is negligible as shown 
analyzed in Section 4, and the makespan observed 
through the simulation experiments is negligible as shown 
  • The normalized makespan, that is normalized to the 

run time achieved by the best algorithm in a given 
experiment; 

Table 1. Experiment Parameters Table 1. Experiment Parameters 
Parameter Parameter Value Value 

Number of workers  N = 50 
Total workload (flop) 106 

Computation speed 
(flop/s) 

Randomly selected from [Smin 
,1.5×Smin], where Smin = 50 

Communication rate 
(flop/s) 

Randomly selected from 
[0.5×N×Smin ,1.5×N× Smin] 

• The rank which ranges from 0 (best) to 2 (worst);  
• The degradation from the best, which measures the 

relative difference, as a percentage, between the 
makespan achieved by a given algorithm and the 
makespan achieved by the best one. 

These metrics are commonly used in the literature for 



Table 3. Simulation parameters Table 4. Performance comparisons among 
UMR2, UMR and LP Algorithms Parameters Values 

N: Number of workers 10, 12,..,50 
Total workload (flop) 5.105 

CPU speed (flop/s) 

Randomly selected from the 
range [Smin ,1.5×Smin] 
Smin = 5, 10, 15, 20 

Bandwidth (flop/s) 
Randomly selected from the 
range [0.5×NSmin ,1.5×N Smin] 

Latencies (s) 10,1, 10-1,10-2 

Algorithm Normalized 
Makespan 

Rank Degradation 
from the best  

UMR2 1 0.02 0.11 
UMR 1.21 0.98 21.4 
LP 1.59 2 59.8 

 
Furthermore, present algorithms are not equipped with a 
resource selection mechanism as they assume that all 
available workers will participate in processing the 
workload. In this work, we presented the UMR2 
algorithm that divides the workload into chunks in light of 
more realistic parameters mentioned earlier. We 
explained the UMR2’s worker selection policy which is, 
to the best of our knowledge, the first algorithm that 
addresses the resource selection problem. Having such 
policy is indispensable in large commuting platform such 
as the Grid, where thousands of workers are accessible 
but the best subset must be chosen. The simulation 
experiments show that UMR2 is superior to its 
predecessors especially when it is put into operation in a 
colossal WAN environment such as the Grid, which 
agglomerates an abundant pool of heterogeneous workers.  

 

 
comparing scheduling algorithms [2]. The summarized 
result in Table 4 shows that UMR2 could outperform its 
competitors (ranked #1) in most of the cases (98%) with a 
performance increase of 21.8% over the UMR’s. UMR2 
was ranked the 2nd in 2% of the cases as it showed 5.4% 
performance degradation in comparison with the UMR.  
Fig. 1 helps us understand the 2% of the cases where 
UMR may outperform our algorithm. As shown, if the 
number of available workers is small (N ≤ 20) the 
performance of UMR2 may fall behind as the lack of 
workers denies the UMR2 adopting one of the resource 
selection policies, namely Policy II. This suggests that the 
UMR2 is better in a WAN environment such as the Grid 
where thousands of workers are accessible, whereas UMR 
is more appropriate for LAN settings. LP has almost no 
chance to win. This is due to the fact that LP does not 
have any effective strategy of reducing the idle time of 
workers at the end of each round. 
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7.  Conclusion 
 
The ultimate goal of any scheduling algorithm is to 
minimize the time needed to process a given workload. 
UMR and LP have been designed to schedule divisible 
loads in heterogeneous environments such as the Grid. 
However, these algorithms suffer from shortcomings that 
make them less practical for the Grid. For example, these 
algorithms do not take into account a number of chief 
parameters such as bandwidths and latencies. 
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