

UMR2: A BETTER AND MORE REALISTIC SCHEDULING ALGORITHM
FOR THE GRID

Nguyen The Loc*, Said Elnaffar**, Takuya Katayama*, Ho Tu Bao*
*Japan Advanced Institute of Science and Technology (JAIST).

1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan.
{lnguyen,katayama,bao}@jaist.ac.jp

**College of IT, UAE University, Al-Ain, UAE .
elnaffar@uaeu.ac.ae

ABSTRACT

Numerous studies have been targeting the problem of
scheduling divisible workloads in distributed computing
environments. The UMR (Uniform Multi-Round)
algorithm stands out from all others by being the first
close-form optimal scheduling algorithm. However,
present algorithms, including the UMR, do not pay due
attention to optimizing the set of workers that get selected
to participate in processing workload chunks. In addition
to the absence of a good resource selection policy, the
UMR relies primarily in its computation on the CPU
speed and overlooks the role of other key parameters such
as network bandwidth. In this paper, we propose an
extended version of UMR, called UMR2, that overcomes
these limitations and adopts a worker selection policy that
aims at minimizing the makespan. We, theoretically and
experimentally, show that UMR2 is superior to UMR,
specifically in a WAN computing platform such as the
Grid.

KEY WORDS
Divisible loads, multi-round algorithms, Grid computing.

1. Introduction

By definition, a divisible load is “a load that can be
partitioned into any arbitrary number of load fractions”
[1]. This kind of workload arises in many domains of
science such as protein sequence analysis, simulation of
cellular micro physiology, and more [2], [3]. Per the
Divisible Load Theory [1], the scheduling problem is
identified as “Given an arbitrary divisible workload, in
what proportion should the workload be partitioned and
distributed among the workers so that the entire workload
is processed in the shortest possible time.” Any
scheduling algorithm should address the following issues:
• Workload Partitioning Problem. This problem is

concerned with the method by which the algorithm
should divide the workload in order to dispatch to
workers.

• Resource Selection Problem. This problem is
concerned with how to select the best set of workers

that can process the workload partitions such that the
makespan is minimal.

First multi-round algorithm MI, introduced by Bharadwaj
[1], utilizes the overlapping between communication and
computation processes at workers. In MI algorithm the
number of rounds is fixed and predefined. It overlooks
communication and computation latencies. Beaumont [4]
proposes a multi round scheduling algorithm that fixes the
execution time for each round. This enabled the author to
give analytical proof of the algorithm's asymptotic
optimality. Yang et al. [2], through their UMR algorithm,
designed a better algorithm that extends the MI by
considering latencies. However, in UMR, the size of
workload chunks delivered to workers is solely calculated
based on worker’s CPU power; the other key system
parameters, such as network bandwidth, are not factored
in.

One apparent shortcoming in many scheduling algorithms
[1], [2], [4] is the abandon of designing a solid selection
policy for generating the best subset of available workers.
Part of the reason is that the main focus of these
algorithms is confined to the LAN environment, which
makes them not perfectly suitable for a WAN
environment such as the Grid [3]. In the Grid, resource
computing (workers) join and leave the computing
platform dynamically. Unlike other algorithms, we cannot
assume in the Grid that all available resources, which may
be in thousands, must participate in the scheduling
process. The more recent algorithms discussed in [2] very
tersely allude to this problem by proposing primitive
intuitive solutions that are not back up by any analytical
model.

In this paper, we propose a new scheduling algorithm,
UMR2 (inspired by UMR [2]), which is better and more
realistic. UMR2 is superior to UMR with respect to two
aspects. First, unlike UMR that relies primarily in its
computation on the CPU speed, UMR2 factors in several
other parameters, such as bandwidth and all types of
latencies which renders the UMR2 a more realistic model.
Second, UMR2 is equipped with a worker selection
policy that finds out the best workers. As a result, our

mailto:lnguyen,katayama, bao}@jaist.ac.jp
mailto:elnaffar@uaeu.ac.ae

experiments show that our UMR2 algorithm outperforms
previously proposed algorithm including the UMR. The
rest of this paper is organized as follows. Section 2 briefly
describes the computation platform. Section 3 and 4
describe the UMR and UMR2 algorithms, respectively.
Section 5 analytically shows how UMR2 is superior to
UMR. Section 6 experimentally validates our work and
shows how UMR2 outperforms UMR and other similar
scheduling algorithms. Section 7 concludes the paper.

ijn

k
k

i
ji round

S

Schunk β+=

∑
=1

 (1)

where

() ii

n

k
kkn

k
k

i
i cLatScLatS

S

S
−= ∑

∑ =

=

1

1

β (2)

 3.2 Induction Relation on Chunk Sizes 2. The Heterogeneous Computing Platform
 To fully utilize the network bandwidth, the dispatching of

the master and the computation of Wn should finish at the
same time

Let us consider a computation Grid in which a master
process has access to N worker processes and each
process runs in a particular computer. The master can
divide the total load Ltotal into arbitrary chunks and
delivers them to appropriate workers. The following
notation will be used throughout this paper:

roundj = φ j (round0 - η) + η (3)

where

1

1

−

=








= ∑

n

i i

i

B
Sφ (4)

• Wi: worker number i.
• N: total number of available workers.

()

∑

∑ ∑∑

=

= ==

−









+×−×

= n

i i

i

n

i

n

i
i

i

i
n

i
iii

B
S

nLat
B

ScLatS

1

1 11

1

β

η
• n: number of workers that are actually selected
• m: the number of rounds. (5)
• chunkji : the fraction of total workload that the master

delivers to Wi in round j (i=1,..,n ; j=1,..,m).
• Si: computation speed of the worker i (flop/s).

3.3 Determining the First Round Parameters • Bi: the data transfer rate of the connection link
between the master and Wi (flop/s).

Since the objective of the UMR is to minimize the
makespan of the application, we can write: • Tcompji: computation time required for Wi to process

chunkji . F(m, round0) = • cLati : the fixed overhead time (second) needed by Wi
to start computation. ∑∑

−

==








++








+=

1

01

0
m

j
n

n

jn
n

i
i

i

i cLat
S

chunk
nLat

B
chunk (6)

• nLati : the overhead time (second) incurred by the
master to initiate a data transfer to Wi. We denote
total latencies by Lati = cLati + nLati .

At the same time, we also have the constraint that the
chunk sizes sum up to the total workload:

• Tcommji: communication time required for master to
send chunkji to Wi () () 0

1
1, 00 =−
−
−

−+= total

m

LroundmroundmG
φ
φηη

Tcommj,i = nLati + chunkj,i / Bi ;
Tcompj,i = cLati + chunkj,i / Si ; This optimization problem can be solved by the

Lagrangian method [2], [5]. • roundj: the workload dispatched during round j
roundj = chunkj,1 + chunkj,2 + ... + chunkj,n

 3.4 Worker Selection Policy
3. The UMR Algorithm: Overview

UMR sorts workers according to Si/Bi in increasing order,
and selects the first n workers out of the original N
workers such that: S1 / B1 + S2 / B2 + … + Sn / Bn < 1

In the subsequent sections, we sketch the key concepts in
the UMR algorithm, referring the reader to [2] for more
details. Next, we explain how the UMR partitions its load
into chunks (Section 3.1), how it decides on the size of
each chunk (Section 3.2), what are the initial parameters
for the first round (Section 3.3), and outline the simple
worker selection policy adopted by the UMR.

Furthermore, UMR requires that, the computation-
communication ratio Bi/Si be larger than the number of
workers n: Bi / Si > n (∀i =1,2,...,N) (7)

4. UMR2: The New Algorithm

3.1 Load Partitioning Policy In this section, we present our UMR2 algorithm. We

explain how the UMR2 partitions its load into chunks
(Section 4.1), how it decides on the size of each chunk
(Section 4.2), and the determination of initial parameters
for the first round (Section 4.3). The key concept in the
UMR2 algorithm, which is the worker selection policy, is
described in the last Section 4.4.

UMR adopts a load partition policy that ensures that each
worker spends the equal CPU time like others through a
round; network bandwidth is not taken into account:

cLati + chunkji / Si = constj
so we derive

4.1 Load Partitioning Policy

Unlike the UMR, which considers the CPU power only,
our algorithm considers both of the CPU power and the
network bandwidth when partitioning the load:

cLati + chunkji /Si + nLati + chunkji / Bi = constj
We set: Ai = Bi Si / (Bi + Si)
so we have chunkj,i = αi roundj + βi (8)
where αi = Ai / (A1 + A2 + ... + An)
 βi = αi[A1(Lat1-Lati) + ... + An(Latn - Lati)] (9)
Expressions (8) and (9) show the equal role that CPU
power (Si) and bandwidth (Bi) play. This renders the
UMR2 a more realistic algorithm and therefore, a better
one with respect to performance.

4.2 Induction Relation on Chunk Sizes 4.2 Induction Relation on Chunk Sizes

Similar to the induction relation derived in section 3.2 for
the UMR, we have:
Similar to the induction relation derived in section 3.2 for
the UMR, we have:

roundj = θ j (round0 - η) + η roundj = θ j (round0 - η) + η
where where
θ = Bn / (Bn + Sn) /[S1/(B1 + S1) + ... + Sn/(Bn + Sn)] (11) θ = Bn / (Bn + Sn) /[S1/(B1 + S1) + ... + Sn/(Bn + Sn)] (11)









−


















+−+= ∑∑

== n

n
n

i i

i
n

i i

i
inn SBB

nLatcLat
ααβ

βη
11

4.3 Determining the First Round Parameters

To find out round0 and m of UMR2 we have to minimize
the makespanUMR2 : F(m, round0) =

∑∑
−

==








++








+=

1

01

0
m

j
n

n

jn
n

i
i

i

i cLat
S

chunk
nLat

B
chunk

subject to:
G(m, round0) = mη +(round0 - η)(1- θm) /(1- θ) – Ltotal =0
After obtaining m and round0 by using Lagrangian
method, we can obtain the value of roundj and chunkji
using (10) and (8), respectively.

4.4 Worker Selection Policy

Let V denote the original set of N available workers
(|V|=N). In this subsection we explain our resource
selection policy that aims at finding the best subset V*
(V*⊆V, |V*|=n) that minimizes the makespan.
Algorithm 1: Resource_Selection(V)
Begin

Search Wn∈V such that:
Bn/(Bn+Sn) ≤ Bi/(Bi+Si) ∀Wi∈V

V*1 = Branch_and_Bound(V);
V*2 = Greedy(V, “θ <1”); V*3 = Greedy(V, “θ =1”);
select V*∈{V*1, V*2, V*3} such that

 m(V*)= min{m1(V*1), m2(V*2), m3(V*3)} ;
return (V*);

End
If Wi denotes worker i, then Wn denotes the last worker
that receives load chunks in a round, and W1 denotes the
first worker that receives chunks in a round. Our
selection, as sketched in Algorithm 1, starts with finding

the last worker (Wn) that should receive chunks in a
round. Therefore, V* is initialized by {Wn}. Afterwards,
the selection algorithm, depending on θ, examines three
cases using different search algorithms aiming at finding
the best algorithm that adds more workers to V*. After
obtaining the three candidate V* sets, the algorithm
chooses the one that produces the minimum makespan.
When θ =1, and by using (12), we compute the makespan
as follows: makespan UMR2 =

C
SB

B
SB

S
mA

L
Vi nn

n

ii

i

Vi
i

total +







+

+
+

= ∑∑ ∈
∈

*
*

1 (13)

where C is a constant

n
Vi

i cLatmnLatC .
*

+= ∑
∈

Now, since
if θ >1




−

=
−
−

→∝ θθ
θ

1
0

1
1lim mm

(10)

and since m (the number of rounds) is usually large (in
our experiments, m is in hundreds), we can write:

 if θ <1




−

≈
−
−

θθ
θ

1
0

1
1

m

if θ >1

if θ <1
 We evaluate the accuracy of this approximation by
experiments mentioned in sub section 6.1

When θ >1 and by substituting this term into (12) we get

C

SB
SBSB

BLmakespan

Vi ii

ii
nn

ntotal
UMR +

+
+

×
=

∑
∈ *

2

)(
 (14)(12)

When θ <1 and by substituting the above term into (12)
we get makespanUMR2 =

C
SB

SB
SB

S
L

Vi ii

ii

Vi ii

i
total +

++
= ∑∑

∈∈ **
 (15)

Based on the above analysis, we have three selection
policies for generating V*:
1. Policy I (θ >1): this policy aims at reducing the total

idle time by progressively increasing the load
processed in each round (i.e., roundj+1 > roundj ∀j
=0,1,...,m-1).

2. Policy II (θ <1): this policy aims at maximizing the
number of workers that can participate by
progressively decreasing the load processed in each
round (i.e., roundj+1 < roundj ∀j =0,...,m-1).

3. Policy III (θ =1): this policy keeps the load processed
in each round constant (i.e., roundj+1 = roundj ∀j =
0,1,...,m-1). As shown in Algorithm 1, three policies
will be examined in order to choose the one that
produces the minimum makespan.

Next, we discuss each policy in more detail.

4.4.1. Policy I (θ >1)

From (14), we can see that under this policy, V* is the
subset that maximizes the sum

4.4.3. Policy III (θ =1)

∑
∈ +

=
*

1 *)(
Vi ii

ii

SB
SBVm

Under this policy, we need to find V* that minimizes the
following makespan function

∑∑
∈∈ ++

=
**

3 *)(
Vi ii

ii

Vi ii

i

SB
SB

SB
SVm subject to θ >1 or

∑
∈ +

<
+*Vi nn

n

ii

i

SB
B

SB
S

 (16)
subject to θ =1 or

()
1

*

=

+
+ ∑

∈Vi ii

i
nn

n

SB
SSB

B

One can observe that this is a Binary Knapsack [7]
problem that can be solved using the Branch-and-Bound
algorithm [7]. It is noticeable that m3() is the same as m2() (Policy II).

However, the two objective functions differ with respect
to their constraints. Therefore, we can use the same
Greedy search algorithm explained earlier with the
exception that the termination condition should be θ =1
(instead of θ <1).

4.4.2. Policy II (θ <1)

From (15), we can see that under this policy, V* is the
subset that minimizes
From (15), we can see that under this policy, V* is the
subset that minimizes

∑∑
∈∈ ++

=
**

2 *)(
Vi ii

ii

Vi ii

i

SB
SB

SB
SVm

5. UMR2 vs. UMR: Analytical Comparison
 subject to θ <1 or In this section we analytically show how UMR2 is always
better than UMR through the following lemmas. ∑

∈ +
>

+*Vi nn

n

ii

i

SB
B

SB
S

 (17)
LEMMA 2. If the UMR2 and UMR algorithms end up with
the same set of selected workers (V*) then makespanUMR2
< makespanUMR

To start with, we should initiate V* with the first worker,
W0, that minimizes m2().

Proof. If we sort the n workers of V* by Si/Bi in an
increasing order:

LEMMA 1. m2(V*) is minimum if V*={W0} such that B0
≥Bi ∀Pi ∈V.

S1 / B1 < S2 / B2 < … < Sn / Bn < 1/n (18)Proof. Consider an arbitrary subset X⊆V, X = {P1, P2, ...
Pr}. We have: We can write

Bn / Sn > n ⇒ Bn / (Bn + Sn) > n.Sn / (Bn + Sn) (19)
∑ ∑
= = +

>
+

⇒>
r

i

r

i ii

ii

ii

i
i SB

SB
SB

SBBB
1 1

00 Concurrently, from (18) we derive
 Sn / (Bn + Sn) > Si / (Bi + Si) (∀i = 1,2,...,n) (20)
From (19) and (20) we derive

)(*)(22

1

1

00

00

00

0

XmVm

SB
SB

SB
S

SB
SB

SB
S

r

i ii

ii

r

i ii

i

<⇒

+

+
<

+

+

∑

∑

=

=
∑
=

>⇒
+

>
+

n

i ii

i

nn

n

SB
S

SB
B

1

1θ
�

In the case of θ >1, makespanUMR2 is computed by (14)

C

SB
SBSB

BLmakespan

Vi ii

ii
nn

ntotal
UMR +

+
+

×
=

∑
∈ *

2

)(
 After adding W0 to V*, we should keep conservatively

adding more workers until constraint (17) is satisfied. In
fact, the next Wk that should be added to V* is the one that
satisfies the following inequality:

(21)

From (6) we derive:
m2(V*∪{Wk}) ≤ m2(V*∪{Wj}) ∀Wj ∈V-V*

C
S

Lmakespan m

Vi
i

total
UMR +








−
−

+= +

∈
∑ 1

*

11
φφ
φ

 The Greedy algorithm described below progressively adds
more Pk until V* satisfies (17), i.e. until (θ <1). The run
time of this search is O(n).

From (18) we have Algorithm 2: Greedy(V, thetaCondition)

01lim11 1
1

=
−
−

⇒>⇒< +→∝
=
∑ mm

n

i i

i

B
S

φφ
φφ

Begin
Search Wn∈V: Bn/(Bn+Sn) ≤ Bi/(Bi+Si) ∀Wi∈V
Search W0:B0 ≥Bi (∀Wi∈V); V* ={Wn ,W0};V = V-V*;

and since m (the number of rounds) is usually large (in
our experiments, m is in hundreds), we can write:

Repeat
Search worker Wk satisfy

1 + (1-φ) / (φ - φ m+1) ≈ 1 m2(V*∪{Wk}) ≤ m2(V*∪{Wj}) ∀Wj ∈V
So we have V* = V*∪{Wk}; V = V-{Wk};

CSLmakespan
Vi

itotalUMR +







= ∑

∈ *

Until thetaCondition;
(22)return (V*);

End

From (18) we derive Table 2. The Absolute Deviation between the
Experimental and Theoretical ⇒ Bn / (Bn + Sn) ≤ Bi / (Bi + Si) (∀i = 1,2,...,n)

∑∑
== +

≤
+

⇒
n

i ii

ii
n

i
i

nn

n

SB
SBS

SB
B

11

nLat, cLat (s) D1 (%) D2 (%) D3 (%)
1 3.15 2.42 3.34

10-1 2.23 1.75 2.27
10-2 1.51 0.92 1.94
10-3 0.82 0.51 1.25 () ∑∑

==

<







+

+⇒
n

i
i

n

i ii

ii
nnn S

SB
SB

SBB
11

1

And by considering (21) and (22) we derive: in Table 2. This confirms that the approximation
assumptions adopted in our analysis are plausible. Table 1
outlines the parameters that we used in our experiments.

⇒ makespan UMR2 < makespan UMR �
LEMMA 3. In all cases, makespanUMR2 < makespanUMR

Let us denote: Proof. If we denote:
• MKe is the makespan obtained from the experiments. • A is the subset which chosen by UMR
• MK1, MK2, MK3 are the makespans computed by

formula (13), (14) and (15) respectively. • B is the subset which chosen by UMR2
• V1, V2, V3 is the subsets which chosen by UMR2 in

3 cases: θ >1, θ = 1, θ <1, respectively
• V1, V2, V3 is the subsets which chosen by UMR2 in

3 cases: θ >1, θ = 1, θ <1, respectively
• Di (i=1, 2, 3) is the absolute deviation between the

theoretical makespan, MKi, and the experimental
makespan MKe. Therefore: Using Lemma 2, we have Using Lemma 2, we have (23)

makespanUMR (A) > makespanUMR2 (A) makespanUMR (A) > makespanUMR2 (A)
(%).100

e

ei
i MK

MKMK
D

−
= i =1,2,3As discussed in Section 4.4.1, V1 is an optimal solution of

the Knapsack system produced by the Branch-and-bound
algorithm. So we have

As discussed in Section 4.4.1, V1 is an optimal solution of
the Knapsack system produced by the Branch-and-bound
algorithm. So we have Table 2 summarizes the absolute deviations computed for

different latencies. From these results we can make the
following remarks:

makespanUMR2 (A) ≥ makespanUMR2 (V1) makespanUMR2 (A) ≥ makespanUMR2 (V1)
Because B is chosen by UMR2 by comparing V1, V2, V3
so we have
Because B is chosen by UMR2 by comparing V1, V2, V3
so we have

(24)

• The absolute deviation between the theoretical and the
experimental makespan ranges from 0.5% to 3.1%,
which is negligible.

(25)makespanUMR2 (V1) ≥ makespanUMR2 (B) makespanUMR2 (V1) ≥ makespanUMR2 (B)
From (23) (24) (25) we derive From (23) (24) (25) we derive
 makespanUMR (A) > makespanUMR2 (B) � makespanUMR (A) > makespanUMR2 (B) � • We notice that D2 < D1 < D3. The justification is that

the absolute deviation (D) is proportional to the
number of participating workers in a given selection
policy. The more workers participate, the larger D
becomes. As we recall that D2 represents the deviation
caused by policy II (θ >1), which is the most
conservative policy with respect to the number of
workers allowed to participate. D3 represents the
deviation caused by policy III (θ <1), which is the
most relaxed policy with respect to the number of
participating workers. D1 of policy I (θ =1) falls in
the middle with respect to the number of participating
workers and according the observed deviation.

6. Experimental Results 6. Experimental Results

In order to evaluate UMR2 experimentally, we developed
a simulator using the SIMGRID toolkit [6] which has
been used to evaluate the original UMR algorithm. To
evaluate the UMR2 algorithm, we used the same metrics
(Table 4) and the same values of configuration parameters
(Table 1) that were used to evaluate UMR. We conducted
a number of experiments that aim at i) showing the
validity of our approximation assumptions discussed in
Section 4, and ii) showing that the UMR2 algorithm is
superior to its predecessor multi-round algorithms,
namely LP and UMR.

In order to evaluate UMR2 experimentally, we developed
a simulator using the SIMGRID toolkit [6] which has
been used to evaluate the original UMR algorithm. To
evaluate the UMR2 algorithm, we used the same metrics
(Table 4) and the same values of configuration parameters
(Table 1) that were used to evaluate UMR. We conducted
a number of experiments that aim at i) showing the
validity of our approximation assumptions discussed in
Section 4, and ii) showing that the UMR2 algorithm is
superior to its predecessor multi-round algorithms,
namely LP and UMR.

6.2. Comparison with Other Algorithms

6.1. Validity of Approximation Assumptions 6.1. Validity of Approximation Assumptions We compare UMR2 with the most powerful scheduling

algorithm, namely UMR [2], [8] and LP [4]. Table 3
outlines the configuration parameters used in the
simulation experiments. The performances of these
algorithms have been compared with respect to three
metrics:

The experiments we conducted show that the absolute
deviation between theoretically computed makespan, as
The experiments we conducted show that the absolute
deviation between theoretically computed makespan, as
analyzed in Section 4, and the makespan observed
through the simulation experiments is negligible as shown
analyzed in Section 4, and the makespan observed
through the simulation experiments is negligible as shown
 • The normalized makespan, that is normalized to the

run time achieved by the best algorithm in a given
experiment;

Table 1. Experiment Parameters Table 1. Experiment Parameters
Parameter Parameter Value Value

Number of workers N = 50
Total workload (flop) 106

Computation speed
(flop/s)

Randomly selected from [Smin
,1.5×Smin], where Smin = 50

Communication rate
(flop/s)

Randomly selected from
[0.5×N×Smin ,1.5×N× Smin]

• The rank which ranges from 0 (best) to 2 (worst);
• The degradation from the best, which measures the

relative difference, as a percentage, between the
makespan achieved by a given algorithm and the
makespan achieved by the best one.

These metrics are commonly used in the literature for

Table 3. Simulation parameters Table 4. Performance comparisons among
UMR2, UMR and LP Algorithms Parameters Values

N: Number of workers 10, 12,..,50
Total workload (flop) 5.105

CPU speed (flop/s)

Randomly selected from the
range [Smin ,1.5×Smin]
Smin = 5, 10, 15, 20

Bandwidth (flop/s)
Randomly selected from the
range [0.5×NSmin ,1.5×N Smin]

Latencies (s) 10,1, 10-1,10-2

Algorithm Normalized
Makespan

Rank Degradation
from the best

UMR2 1 0.02 0.11
UMR 1.21 0.98 21.4
LP 1.59 2 59.8

Furthermore, present algorithms are not equipped with a
resource selection mechanism as they assume that all
available workers will participate in processing the
workload. In this work, we presented the UMR2
algorithm that divides the workload into chunks in light of
more realistic parameters mentioned earlier. We
explained the UMR2’s worker selection policy which is,
to the best of our knowledge, the first algorithm that
addresses the resource selection problem. Having such
policy is indispensable in large commuting platform such
as the Grid, where thousands of workers are accessible
but the best subset must be chosen. The simulation
experiments show that UMR2 is superior to its
predecessors especially when it is put into operation in a
colossal WAN environment such as the Grid, which
agglomerates an abundant pool of heterogeneous workers.

comparing scheduling algorithms [2]. The summarized
result in Table 4 shows that UMR2 could outperform its
competitors (ranked #1) in most of the cases (98%) with a
performance increase of 21.8% over the UMR’s. UMR2
was ranked the 2nd in 2% of the cases as it showed 5.4%
performance degradation in comparison with the UMR.
Fig. 1 helps us understand the 2% of the cases where
UMR may outperform our algorithm. As shown, if the
number of available workers is small (N ≤ 20) the
performance of UMR2 may fall behind as the lack of
workers denies the UMR2 adopting one of the resource
selection policies, namely Policy II. This suggests that the
UMR2 is better in a WAN environment such as the Grid
where thousands of workers are accessible, whereas UMR
is more appropriate for LAN settings. LP has almost no
chance to win. This is due to the fact that LP does not
have any effective strategy of reducing the idle time of
workers at the end of each round.

Acknowledgements

Our research is conducted as a program for the "Fostering
Talent in Emergent Research Fields'' in Special
Coordination Funds for promoting Science and
Technology by Ministry of Education, Culture, Sports,
Science and Technology, Japan. Our research has also
been supported by research grant \#02-06-9-11/06 from
the Scientific Research Council of the UAE University.

7. Conclusion

The ultimate goal of any scheduling algorithm is to
minimize the time needed to process a given workload.
UMR and LP have been designed to schedule divisible
loads in heterogeneous environments such as the Grid.
However, these algorithms suffer from shortcomings that
make them less practical for the Grid. For example, these
algorithms do not take into account a number of chief
parameters such as bandwidths and latencies.

References

[1] V. Bharadwaj, D.Ghose, V.Mani, and T. G. Robertazzi,
Scheduling divisible loads in parallel and distributed systems
(IEEE Computer Society Press, 1996).
[2] Y. Yang, K.V. Raart, & H. Casanova, Multiround algorithms
for scheduling divisible loads, IEEE Transaction on Parallel
and Distributed Systems, 16(11) 2005, 1092-1104.

0

0.5

1

1.5

2

2.5

10 20 30 40 50
The number of available workers

A
ve

ra
ge

 m
ak

es
pa

n
no

rm
al

iz
ed

 to
U

M
R2

UMR
LP

[3] I. Foster and C. Kesselman, Grid2: blueprint for a new
computing infrastructure (Second ed. San Francisco, Morgan
Kaufmann Publisher , 2003).
[4] O. Beaumont, A. Legrand, & Y. Robert, Scheduling divisible
workloads on heterogeneous platform, Parallel Computing, 29
(9) 2003, 1121-1152.
[5] D. P. Bertsekas, Constrained optimization and lagrange
multiplier methods (Belmont, Mass. : Athena Scientific , 1996).
[6] Available at http://simgrid.gforge.inria.fr
[7] S. Martello and P. Toth, Knapsack problems : algorithms
and computer implementations (Chichester, West Sussex,
England : Wiley , 1990)
[8] Y. Yang, & H. Casanova, UMR: a multi-round algorithm for
scheduling divisible workloads, Proc. of the International
Parallel and Distributed Processing Symposium (IPDPS'03),
Nice, France, 2003.

Fig. 1: The effect of N on the makespan

http://simgrid.gforge.inria.fr/

	ABSTRACT
	KEY WORDS
	�
	Based on the above analysis, we have three selection policies for generating V*:
	Policy I ((>1): this policy aims at reducing the total idle time by progressively increasing the load processed in each round (i.e., roundj+1 > roundj (j =0,1,...,m-1).
	Next, we discuss each policy in more detail.
	4.4.1. Policy I ((>1)
	4.4.2. Policy II ((<1)
	4.4.3. Policy III ((=1)
	6.1. Validity of Approximation Assumptions
	6.2. Comparison with Other Algorithms

	Acknowledgements
	References

