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ABSTRACT 
The hepatitis temporal database collected at Chiba university hos-
pital between 1982-2001 was recently given to challenge the 
KDD research. The database is large where each patient corre-
sponds to 983 tests represented as sequences of irregular time-
stamp points with different lengths. This paper presents a tempo-
ral abstraction approach to mining knowledge from this hepatitis 
database. Exploiting hepatitis background knowledge and data 
analysis, we introduce new notions and methods for abstracting 
short-term changed and long-term changed tests. The abstracted 
data allow us to apply different machine learning methods for 
finding knowledge part of which is considered as new and inter-
esting by medical doctors. 

Categories and Subject Descriptors 
H2.8 [Data Management]: Database Applications - Data Mining. 

Keywords 
Hepatitis data, medicaldata mining, temporal abstraction. 

1. INTRODUCTION 
Hepatocellular carcinoma (HCC) is the most common type of 
liver cancer and the fifth most common cancer in the world. 
About three quarters of the cases of HCC are found in Southeast 
Asia. HCC is also very common in sub-Saharan Africa. The exact 
cause of HCC is unknown. Viruses such as hepatitis B and hepa-
titis C have been shown to increase the risk of HCC [11], and 
finding knowledge in the hepatitis domain is a challenging task in 
medical research.  
The hepatitis temporal database collecting from 1982 to 2001 at 
the Chiba university hospital was given recently to challenge the 
data mining research [14]. This database contains results of 983 
laboratory tests of 771 patients. It is a large un-cleansed temporal 
relational database consisting of six tables of which the biggest 
has 1.6 million records. Collected during a long period with pro-
gress in test equipments, the database also contains inconsistent 
measurements, many missing values, and a large number of non 
unified notations. The doctors posed a number of problems on 
hepatitis that are expected to be investigated by KDD techniques.  
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Temporal abstraction (TA) is one approach to deal with time-
related data in medicine research. The key idea is to transform 
time-stamp points by abstraction into an interval-based represen-
tation of data. Typical works on temporal abstraction are those in 
[1], [3], [8], [10], [16]. Temporal abstraction can be generally 
considered in two phases: basic temporal abstraction that con-
cerns with abstracting time-stamped data within episodes, and 
complex temporal abstraction that concerns with temporal rela-
tionships between findings from a basic temporal abstraction or 
from other complex temporal abstractions. The findings in a basic 
temporal abstraction usually consist of state of a patient on a test 
within an episode (e.g., low, normal, high values) and trend of the 
patient (e.g., increase, decrease, stationary patterns), see [8], [17].  
The common points in existing methods of temporal abstraction 
are they were developed for short periods and/or irregular time-
stamp points. The work in [1], [3] related to temporal data of an 
individual measured on consecutive days in a short period. The 
work in [10] on insulin-dependent diabetes related to temporal 
data measured on consecutive days within two weeks. The work 
in [8] on artificial ventilation of newborn infants related to tem-
poral regularly measured every minute. However, the main fea-
ture of the hepatitis database is it contains long-term and irregular 
temporal sequences.  
The difficulty in mining the hepatitis database mainly lies in the 
fact that the patient’s data were gathered from many laboratory 
tests in different periods, varying from several weeks to more 
than twenty years, and most of them are taken at irregular time-
stamped points. Each problem of P1-P6 requires a special sub-
dataset derived from the original hepatitis database. 
This paper presents our temporal abstraction approach to such 
long-term and irregular temporal sequences in the hepatitis data-
base. Different from separately finding “states” and “trends” as in 
related work, we introduce the notion of “changes of state” to 
characterize the long-term changed tests, and the notions of “base 
state” and “peaks” to characterize the short-term changed tests, as 
well as algorithms to detect them. Parts of obtained results are 
evaluated by medical doctors as new and interesting.  
In section 2 we briefly describe the mining problems and our 
temporal abstraction framework for mining problems in the hepa-
titis domain. Section 3 presents methods and results of basic tem-
poral abstraction. Section 4 presents methods and results of com-
plex temporal abstraction. Section 5 provides a discussion and 
conclusions.  

2. PROBLEMS AND FRAMEWORK 
The hepatitis database consists of the following data tables: 
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T1.  Basic information of patients (771 records)  
T2.  Results of biopsy (960 records) 
T3.  Information on interferon therapy (198 records) 
T4.  Information about measurements in in-hospital tests         

(459 records) 
T5.  Results of out-hospital tests (30,243 records) 
T6.  Results of in-hospital tests (1,565,877 records) 

The medical doctors posed the following problems to challenge 
the KDD community [14]: 

P1. Discover the differences in temporal patterns between hepa-
titis B and C. 

P2. Evaluate whether laboratory tests can be used to estimate 
the stage of liver fibrosis.  

P3. Evaluate whether the interferon therapy is effective or not. 
P4. Discover the relationships between the stage of liver fibrosis 

and the onset of hepatocarcinoma. 
P5. Discover the relationships between hematological status and 

time to the onset of hepatocarcinoma. 
P6. Validate if GOT and GPT can be used to measure the in-

flammation speed.  

Generally, we distinguish two common approaches to deal with 
numerical temporal sequences in machine learning: (1) methods 
that directly process temporal data in its original form, and (2) 
methods that transform temporal data into symbolic one then 
process transformed data with suitable mining methods for sym-
bolic data. We adopted the second approach because that the 
problems P1-P6 are concerned with typical clinical tasks where 
physicians need to contemporaneously examine and combine sig-
nificant findings on parameters, to abstract such findings into 
clinically meaningful higher-level concepts, and to detect signifi-
cant trends in temporal data and abstract concepts. The findings 
with abstraction are usually easier to intuitively understand, and 
abstraction usually can uncover essential features by forgetting 
details. A meaningful abstracted concept could use data points 
and characterizes significant features over periods of time.  
In the hepatitis data, the data available for each patient consist of 
983 sequences with different lengths and irregular time-stamped 
values of tests. The fundamental problem here is how to trans-
form 983 temporal sequences of each patient into a record of 983 
symbolic values, i.e., how to transform multi time-stamped points 
of each patient on one test into one symbolic value in the record. 
If a transformed dataset can be obtained in an appropriate way, 
many machine learning methods can be applied to analyze it. Our 
solution to this problem is concerned with temporal abstraction 
(TA) methods.  
TA methods aim to derive an abstract description of temporal 
data by extracting their most relevant features [1], [3], [8], [10], 
[16], [17]. The TA task can be defined as follows. The input in-
cludes a set of time-stamped data points (events) and abstraction 
goals. The output includes a set of interval-based, context-
specific unified values or patterns (usually qualitative) at a higher 
level of abstraction. The TA task can be decomposed into two 
subtasks of abstractions: basic TA for abstracting time-stamped 
data from given episodes (which are significant intervals for the 
investigation purpose) and complex TA for investigating specific 
temporal relationships between episodes that can be generated 
from a basic TA or from other complex TAs. 

Basic temporal abstractions typically extract states (e.g., low, 
normal, high), and/or trends (e.g., increase, stable, decrease) from 
a uni-dimensional temporal sequences. The main difference be-
tween TA task in hepatitis domain and those in the literature lies 
in the complexity of temporal sequences under consideration. 
Generally, doing detection of trends and characterization of states 
for short-term and regular sequences is different from doing these 
tasks for long and irregular time-stamp sequences.   
The essential ideas of our temporal abstraction methods to deal 
with long and irregular time-stamp sequences are the separation 
of long-term and short-term changed tests groups, and doing ab-
straction of each group in efficient and appropriate ways. In fact, 
we introduce the notions of “base state” and “peaks” to character-
ize short-term changed sequences, and the notions of “change of 
state” to characterize short-term changed sequences. In next two 
subsections we will present these notions and methods in details. 
Though our temporal abstraction framework is general, we cur-
rently focus on problems P1, P2 and P3.  
 

 
Figure 1. Overview of the temporal abstraction method 

3. PREPROCESSING  
The preprocessing of the hepatitis database aims to prepare and 
extract sub-datasets, before doing temporal abstraction, that are 
appropriate for each problem of P1-P6. We distinguish a general 
preprocessing for the common use (including data cleaning, inte-
gration, reduction, and transformation) and a special preprocess-
ing for extracting datasets to investigate problems. 

3.1 General preprocessing 

The data cleaning requires eliminate noisy data. The main task is 
to remove non unified symbols or characters occurred during the 
data collection. For example, we removed characters such as “H” 
or “L” or others unexpected numeric values, because they are re-
dundant and not suitable for further processing. 
Generally, information in tables T1, T2, and T3 is used to extract 
and integrate data sequences in tables T5 and T6. For example, 
using T1 and T2 (the basic information of patients, the date and 
results of biopsy) we extracted and integrated a dataset for solv-
ing the problem P2 on the fibrosis stages, and using T1 and T3 
(the basic information of patients and interferon therapy) we ex-
tracted and integrated a dataset for solving the problem P3. Table 
1 shows a part of the integrated data table that contains about one 
thousand columns and fifty thousands rows. The numbers of tests 
for each patient are different, and on each test (column) the pa-
tients have sequences of different lengths.  

 



 371

Table 1. Part of integrated table of temporal data 

MID Date Sex IFN  GOT GPT ALB … 
1   19810219 M n 55 65 5.4 … 
1   19810316 M n 54 87 5.2 … 
1   19810513 M n 47 64 5.2 …
… … … … … … … …
1   20010108 M y 68 100 5.5 … 
1 20010210 M y 57 93 5.1 …
2   19911021 F n 54 82 4.5 …
2 19911118 F n 77 114 4.4 …
… … … … … … \… …

For example, the patient with MID 1 has totally done tests of 
GOT, GPT, ALB, etc. 189 times (sequences of length 189) in pe-
riod of 1981-2001, while the patient MID 2 done tests 88 times in 
period of 1991-2001. As mentioned, the most difficulty for proc-
essing is the tests were irregularly done. In [13], the authors in-
vestigated the histogram of the number of test items in sampling 
intervals, and shown that most consecutive tests were done within 
the interval of 28 and 56 days. We adopted this observation as a 
base for further investigation. 
We also carried out several transformations of data. For example, 
the test such as CHE was measured before and after the mid-80s 
by different measurements (with normal regions are [6, 12] and 
[180, 430], respectively). We converted the old test values ac-
cordingly to the new ones obtained by new measurements.  
Another problem is feature selection. By the guide of medical 
doctors and the statistics on frequencies of tests [13], from 983 
tests we selected the 41 most significant ones. The dataset for in-
vestigating each problem will be selected from these tests plus 
some special tests recommended by the medical doctors. These 
tests can be divided into four groups: 

(1) The most frequent tests: GPT, GOT, LDH, ALP, TP, T-BIL, 
ALB, D-BIL, I-BIL, UA, UN, CRE, LAP, G-GTP, CHE, 
ZTT, TTT, T-CHO, oudan, nyuubi, youketsu.   

(2) The high frequent tests: NA, CL, K 

(3) The frequent tests: F-ALB, F-A2.GL, G.GL, F-A/G, F-B.GL, 
F-A1.G 

(4) The less frequent but significant tests: F-CHO, U-PH, U-
GLU, U-RBC, U-PRO, U-BIL, U-SG, U-KET, TG, U-UBG, 
AMY, and CRP. 

3.2 Extracting data for problem P1, P2, and P3 
The data extraction aims to create an appropriate dataset for solv-
ing each problem by temporal abstraction techniques. According 
to the medical background knowledge, we focus on exploiting the 
15 most frequent tests. It is important to recall that the quality of 
temporal abstraction also strongly depends on how episodes on 
which data are abstracted were taken. In this research we adopted 
a simple technique for determining episodes. Based on sugges-
tions of medical experts, we first determine a pilot point (e.g., the 
starting day, the last day, the biopsy day of the sequence, etc.), 
and take episodes (subsequences) from the whole sequence in 
backward, forward, or to both sides of the pilot point.  

In fact, for the problem P1 episodes are forwardly taken from the 
starting day of the sequence. For the problems P2 and P3 epi-
sodes are backwardly taken from the day of doing biopsy or the 
last day before the treatment with interferon, respectively. For the 
problem P3 on the effectiveness of interferon, we have to sepa-
rate the patients into four groups by response to interferon (IFN) 
therapy based on the domain knowledge of doctors: 
(1) Response: GPT data turned into the normal region within 6 

months after IFN therapy finished, and keep this level for 
more than 6 months. 

(2) Partial response: GPT data turned into twice as high as the 
normal region within 6 months after IFN therapy finished, 
and kept this level for more than 6 months.  

(3) Aggravation: GPT data changed remarkably higher than the 
level before IFN therapy within 6 months after IFN therapy 
finished. 

(4) No change: GPT data does not show any change. 

Actually, these criteria are not concrete enough to definitely 
group the data, and can be only used as a general guide. To do 
that task of grouping we have developed a flexible awk program 
with several parameters that soften the thresholds in the above 
four groups (these parameters will be refined with feedbacks 
from all successive steps of experiments). The group id of pa-
tients then will be used as the class attribute combining with data 
preprocessed by temporal abstraction to create input data for 
learning programs. We began with 197 patients who are treated 
with IFN. Among them, we removed one patient who has no GPT 
test data and six others who are with many missing values.  

By using one set of parameters, we came to a final dataset with 
190 instances with a distribution as follows {response: 121, par-
tial-response: 35, aggravation: 5, no-response: 29}. 

4. BASIC TEMPORAL ABSTRACTION  

We started by a separation of two groups of tests, one with values 
that can change in short terms and the other with values that can 
change in long terms when hepatitis B or C occur.  
(1) Tests with values that can change in short terms: GOT, GPT, 

TTT, and ZTT. The tests in this group, in particular GOT and 
GPT, can rapidly change (within several days or weeks) their 
values to high or even very high values when liver cells were 
destroyed by inflammation. 

(2) Tests with values that can change in long terms: The tests in 
the second group can slowly change (within months or years). 
Liver has the reserve capacity so that some products of liver 
(T-CHO, CHE, ALB, and TP) do not have low values until 
reserve capacity is exhaustive (the terminal state of chronic 
hepatitis, i.e., liver cirrhosis). Two main tendencies of change 
of tests in this group are: 
– Going down: T-CHO, CHE, ALB, TP, PLT, WBC, and 

HGB. 
– Going up: D-BIL, I-BIL, T-BIL, and ICG-15. 

4.1 Temporal abstraction primitives 
Based on visual analysis of various sequences, we determined the 
following temporal abstraction primitives and relations:  
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1. State primitives:  N (normal), L (low), VL (very low), XL 
(extreme low), H (high), VH (very high), XH (extreme high).  

2. Trend primitives: S (stable), I (increasing), FI (fast increas-
ing), D (decreasing), and FD (fast decreasing). 

3. Peak primitives: P (peaks occured). 
4. Relations: > (“change state to”), & (“and”), – (“and then”), / 

(“majority/minority”, X/Y” means that the majority of points 
are in state X and the minority of points are in state Y). 

The thresholds to distinguish the state primitives of tests are 
given by medical doctors, for example, those to distinguish val-
ues N, H, VH, XH of TP are 5.5, 6.5, 8.2, 9.2 where (5.5, 6.5) is 
the normal region. We define four structures of abstraction pat-
terns as follows: 

<pattern> ::= <state primitive>            
<pattern> ::= <state primitive> <relation> <state primitive> 
<pattern> ::= <state primitive> <relation> <peak> 
<pattern> ::= <state primitive> <relation> <state primitive>  

<relation> <state primitive> 

 
Figure 2. Patterns concerning the short-term changed tests 

Examples of abstracted patterns in a given episode are as follows: 
– “ALB = N” (ALB is in the normal region),  
– “CHE = H−I” (CHE is in the high region and then increasing), 
– “GPT = XH&P” (GPT is extremely high and with peaks),  
– “I-BIL = N>L>N” (I-BIL is in the normal region, then changed 

to the low region, and finally changed to the normal region). 
Also, based on a careful investigation of various sequences from 
the hepatitis database, we found and defined possible patterns of 
sequnences. Figure 2 shows typical possible patterns (8 and unde-
termined) for short-term changed tests, and Figure 3 shows typi-
cal possible patterns (21 and undetermined) for long-term 
changed tests. Suppose that S is a sequence to be considered. The 
following notations will be used to describe algorithms: 
– High(S): # points of S in the high region. 
– VeryHigh(S): # points of S in the very high region 
– ExtremeHigh(S): # points of S in the extreme high region 
– Low(S): # points of S in the low region 
– VeryLow(S): # points of S in the very low region 
– Normal(S): # points of S in the normal region 
– Total(S) = High(S) + VeryHigh(S) + ExtremeHigh(S)       

+ Normal(S) + Low(S) + VeryLow(S) 
– In(S) = Normal(S)/Total(S) 
– Out(S) = (Total(S - In(S))/Total(S) 
– Cross(S): # times S crosses the upper and lower boundaries of 

the normal region. 
 
 

– Firstσ(S): State of the first σ points in S 
– Lastσ(S): State of the last σ points in S  
– State(S): State of S (one of the state primitives) 
– Trend(S): Trend of S (one of trend primitives). 

4.2 Abstraction of short-term changed tests 
Our observation and analysis showed that the short term changed 
tests, especially GPT and GOT, can go up in some very short pe-
riod of time and then go back to some “stable” state. We found 
that the two most representative characteristics of these tests are 
that of a “stable” state, called base state (BS), and the position 
and value of peaks, where the tests suddenly go up. Based on this 
remark, we develop the following algorithm to find the base state 
and peaks of a short term changed test. 

Algorithm 1 (for short-term changed tests) 
Input: A sequence of values of a test (of a patient) with length N 

denoted as S00 = {s1, s2, …, sN} in a given episode. 
Output: A base state and peaks, a set of peaks PEi, and an ab-

stracted pattern derived from the sequence. 
Parameters: NU, HU, VHU, XHU: upper thresholds of normal, 

high, very high, extreme high regions of a test, α (real). 

A. Searching for base state  
1. Based on NU, HU, VHU, and XHU, calculate the correspond-

ing populations Normal(S), High(S), VeryHigh(S), and Ex-
tremeHigh(S) 

2.  MV = max {Normal(S), High(S), VeryHigh(S), Extreme-
High(S)}. If MV/Total(S) ≥ α then BS := MS. 

3. Else BS := NULL 

B. Searching for peaks  

1. For every element si of S, if si > si-1 and si > si+1 then si is a 
local maximum of S. 

2. For every element msi of the set of local maximum points, PEi 
= msi will be a peak if one of the following conditions is true, 
where V(x), S(x) is the value and state of x, respectively: 

 i.     BS = N ∧ S(msi) = VH or higher 
 ii.    BS = H ∧ S(msi) = XH or higher  
 iii.   BS = VH ∧ V(msi) ≥ 2*XHU 
 iv.   BS = XH ∧ V(msi) ≥  4*XHU 
C. Output the basic temporal abstraction pattern  

1. If BS = N ∧ there is no peak, then N 
2. If BS = N ∧ there is at least a peak, then N&P 
3. If BS = H ∧ there is no peak, then H 
4. If BS = H ∧ there is at least a peak, then H&P  
5. If BS = VH ∧ there is no peak, then VH 
6. If BS = VH ∧ there is at least a peak, then VH&P  
7. If BS = XH ∧ there is no peak, then XH  
8. If BS = XH ∧ there is at least a peak, then XH&P 
9. If BS = NULL then Undetermined.  

For the simplicity, in this first consideration we just use 9 above 
values for abstraction. They would be extended in future work for 
representing more complex situations. 
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Figure 3. Patterns concerning the long-term changed tests 

4.3 Abstraction of long term changed tests 
The key idea is to use the “change of state” as the main feature to 
characterize sequences of the long-term changed tests. The 
“change of state” contains information of both state and trend, 
and can compactly characterize the sequence. 
At the beginning of a sequence, the first data points are can be at 
one of the three states “N”, “H”, or “L”. It will happen that: 
- either the sequence changes from one state to another state, 

smoothly or variably (at boundaries), 
- or the sequence remains in its state without changing. 
As changes can generally happen in long-term, it is possible to 
consider the trend of a sequence after changing of the state.  

Algorithm 2 (for long-term changed tests) 
Input: A sequence of patient’s values of a test with length N de-

noted as S00 = {s1, s2, …, sN} in a given episode. 
Output: An abstracted pattern of the sequence derived from the 

sequence. 
Parameters: α, δ, ε, σ (integer), β (real).  

Notation: 
S10 = [s1, median], S20 = [median, sN], S11 = [s1, 1st quartile], S12 = 
[1st quartile, median], S21 = [median, 3rd quartile], S12 = [3rd quar-
tile, sN],   
 
 

A. Identification of patterns with many crosses  

1. If Cross(S00) > α ∧ In(S00) > Out(S00) ∧ High(S00) > Low(S00) 
then N/H  

2. If Cross(S00) > α ∧ In(S00) > Out(S00) ∧ High(S00) < Low(S00) 
then N/L  

3. If Cross(S00) > α ∧ In(S00) < Out(S00) ∧ High(S00) > Low(S00) 
then H/N  

4. If Cross(S00) > α ∧ In(S00) < Out(S00) ∧ High(S00) < Low(S00) 
then L/N  

B. Identification of patterns with many crosses  

5. If In(S00) > β then N  
6. If Out(S00) > β ∧ State(S00) = H ∧ Trend(S00) = S then H−S  
7. If Out(S00) > β ∧ State(S00) = H ∧ Trend(S00) = I then H−I  
8. If Out(S00) > β ∧ State(S00) = H ∧ Trend(S00) = D ∧ Last(S22) 

= H then H−D  
9. If Out(S00) > β ∧ State(S00) = L ∧ Trend(S00) = S then L−S  
10. If Out(S00) > β ∧ State(S00) = L ∧ Trend(S00) = D  then L−D  
11. If Out(S00) > β ∧ State(S00) = L ∧ Trend(S00) = I  ∧ Last(S22) 

= L then L−I  

C. Identification of patterns with changes from the normal region  

12. If Firstσ (S00) = N ∧ Cross(S00) < α ∧ Lastσ(S22) = H ∧ 
Trend(S22) = I ∧ Low(S00) < ε then N>H  

13. If Firstσ (S00) = N & Cross(S00) < α & Lastσ(S22) = H & 
Trend(S22) = D ∧ Low(S00) < ε then N>H−D  

14. If Firstσ (S00) = N ∧ Cross(S00) < α ∧ High(S00) > 
δ ∧ Lastσ(S22) = N ∧ Trend(S22) = D  ∧ Low(S00) < ε then 
N>H>N  

15. If Firstσ (S00) = N ∧ Cross(S00) < α  ∧ Lastσ(S22) = L ∧ 
Trend(S22) = D ∧ High(S00) < ε then N>L  

16. If Firstσ (S00) = N ∧ Cross(S00) < α  ∧ Lastσ(S22) = L ∧ 
Trend(S22) = I ∧ High(S00) < ε then N>L−I  

17. If Firstσ (S00) = N ∧ Cross(S00) < α ∧ Low(S00) > 
δ ∧ Lastσ(S22) = N ∧ Trend(S22) = I ∧ High(S00) < ε then 
N>L>N  

D. Identification of patterns with changes from the high region  

18. If Firstσ (S00) = H ∧ Cross(S00) < α ∧ Lastσ(S22) = N ∧ 
Low(S00) < ε then H>N  

19. If Firstσ (S00) = H ∧ Cross(S00) < α ∧ Normal(S00) > δ ∧ 
Lastσ(S22) = H ∧ Trend(S22) = I ∧ Low(S00) < ε then H>N>H  

E. Identification of patterns with changes from the low region  

20. If Firstσ (S00) = L ∧ Cross(S00) < α ∧ Lastσ(S22) = N ∧ 
Low(S00) < ε then L>N  

21. If Firstσ (S00) = L ∧ Cross(S00) < α ∧ Normal(S00) > δ ∧ 
Lastσ(S22) = L ∧ Trend(S22) = D ∧ High(S00) < ε  then 
L>N>L  

22. If NULL Then Undetermined. 

Figure 4 illustrates a dataset with abstracted values for problem 
P1 obtained by basic temporal abstraction. The small window in 
the middle shows the histogram of abstracted values of four 
short-term changed tests GOT, GPT, TTT, and ZTT.  
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Figure 4. Example of an abstracted data table 

5.  COMPLEX TEMPORAL ABSTRAC-
TION  
In this section we report applications of different machine learn-
ing methods to abstracted data obtained by basic temporal ab-
straction, including our system D2MS [5], [6], C4.5 [15], and 
Clementine [2]. 

5.1 Mining abstracted hepatitis data with system D2MS 
D2MS is a visual data mining system with visualization support 
for model selection [5], [6]. D2MS facilitates the trials of various 
alternatives of algorithm combinations and their settings. The 
data mining methods in D2MS consists of programs CABRO for 
tree learning and LUPC for rule learning [5]. CABRO produces 
decision trees using R-measure and graphically represents them 
in particular with T2.5D tool (trees 2.5 dimension) [6]. LUPC is a 
separate-and-conquer algorithm that controls the induction proc-
ess by several parameters that allow obtaining different results. 
This ability supports the user plays a central role in the mining 
process. 
For the problem P1, different datasets were found by using LUPC 
with different parameters. Figure 5 presents one of rules describ-
ing the type C of hepatitis that is considered interesting by medi-
cal doctors. Table 2 summarizes a rule set discovered by LUPC 
under the constraints that each of them covers at least 20 cases 
and with accuracy higher than 80%.  
From this table some remarks can be drawn among others: 

− The tests ALB, CHE, D-BIL, TP, and ZTT often occur in rules 
distinguishing types B and C of hepatitis. 

− The test GPT and GOT are not necessarily the key tests to dis-
tinguish types B and C of hepatitis (though they are important 
for solving other problems). 

− Rule 32 is simple and interesting as it confirms that among four 
typical short-term changed tests, TTT and ZTT have sensitivity 

to inflammation but they do not have enough specificity to 
liver inflammation. The rule says that “if ZTT is high but de-
creasing we can predict the type C with accuracy 83% (± 5.1)”. 

– Rule 29 “IF CHE = N and D-BIL = N THEN Class = C” is also 
typical for type C as it covers a large population of the class 
(173/272 or 63.6%) with accuracy 82.08% (± 3.42). 

− There are not many rules with large coverage for type B.  
 

 
Figure 5. A rule describing type C of hepatitis 

Table 2. A set of rules found for types B and C hepatitis 
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Figure 6. A rule describing fibrosis at stage F1 

 

 
Figure 7. Paths to fibrosis state F4 on the T2.5D decision 

tree learned by CABRO  

For the problem P2 we found a number of interesting rules by 
D2MS. Figure 6 shows a typical rule describing the fibrosis stage 
F1. Figure 7 presents a decision tree learnt by CABRO for the 
problem P2, and represented in T2.5D. In the T2.5D representa-
tion, some sub-trees of interest are displayed in a 2D space while 
the whole tree is displayed in a virtual 3D space. The figure shows 
a focus on paths leading to fibrosis stage F4 (read leaf nodes). In 
next section we analyze the results of P2 obtained by association 
rule learning.  

For the problem P3, Table 3 shows rules found for two classes of 
non-response and response cases to interferon. It can be observed 
that many rules describing the non-response class are with pat-
terns on GPT and/or GOT having values “XH&P”, “VH&P”, 
“XH”, or “H”, while many rules describing the response class are 
with patterns on GPT or GOT having values “N&P” or “H&P”.  

The results allows us to hypothesize that the interferon treatment 
may have strong effectiveness on peaks (suddenly increasing in a 

short period) if the base state is normal or high. It can be hypothe-
sized that when the base state is very high or extremely high, the 
interferon treatment is not clearly effective. 

Table 3. Typical rules describing non-response                       
and response cases to interferon 

 

5.2 Mining abstracted hepatitis data with Clementine 
The complex temporal abstraction can be done by different data 
mining and machine learning methods depending on the purpose. 
Together with using D2MS we also use Clementine [2] to investi-
gate the abstracted hepatitis data, in particular the association rule 
mining and See5 programs in Clementine. 
Using the Apriori program we have discovered several interesting 
properties of hepatitis. Table 4 shows the rules obtained by one of 
our experiments when investigating the problem P1. These rules 
cover more than 60% of the database. There are 18 over 20 found 
rules sharing a lot of common cases and all of them contain the 
condition “ZTT = H–I”. On the other hand, the only one rule on 
hepatitis type B covering 77 cases says that “if ALB = N and ZTT 
= N then type B”, and another rule covering 173 cases says that 
“if D-BIL = N and CHE = N then type C” which does not relate 
with the condition on ZTT. 

Table 5 shows summaries of 10 rules discovered for fibrosis 
stages F1 and 8 rules for fibrosis stage F3 when investigating the 
problem P2. In this figure, says, the first rule describing fibrosis 
stage F1 can be read as “if GOT = N&P and TP = N/L then the 
class is F1”. It is interesting that the rules describing fibrosis stage 
F1 and F3 are well separated: 
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Table 4.  Discovered association rules and their coverage with 
min_sup = 5% and min_conf = 80% 

 

– The rules describing the fibrosis stage F1 except the first one 
are typically related to the combinations of “GOT = H and 
GPT = XH and (T-CHO = N or TP = N)”, or “T–CHO = N 
and GOT = H and ZTT = H–I”. 

– The rules describing the fibrosis stage F3 can be distinguished 
from those of F1 by the combinations “TP = N/L and (D-BIL 
= N or CHE = N)”, or “GOT = N&P and CHE = N”. 

Table 5.  Discovered association rules and their coverage with 
min_sup = 5% and min_conf = 80% 

 
 

5. DISCUSSION AND CONCLUSION 
We have presented a temporal abstraction approach to mining the 
temporal hepatitis data. From the results obtained so far, several 
lessons have been learned and in some issues could be further 
investigated. 
Temporal abstraction provides many advantages in mining tempo-
ral data, and typically suitable for many clinical tasks in medicine. 
It is because when people can easily collect and measure numeri-
cal patient data on electronic media, they also need to be able to 
answer queries about abstract concepts that summarize the data. 
The difficulty encountered here is that often the abstraction gap 
between the highly specific, raw patient data and the highly ab-
stract medical knowledge does not permit any direct unification 
between data and knowledge. While many machine learning 

methods have been developed and well applied to symbolic do-
mains, most of them cannot be applied to temporal domains. 
Temporal abstraction, if it can yield meaningful abstractions, 
could allow us to apply symbolic learning methods to temporal 
data. 
The temporal abstraction approach in our work differs from re-
lated temporal abstraction approaches in two points: the irregular 
data-stamped points and abstraction of multiple variables. Differ-
ent from related work, the irregularity in measuring the hepatitis 
data requires a careful statistical analysis basing on and combining 
with the expert’s opinion, in particular in the determination of epi-
sodes. Concerning the latter, different from the above-mentioned 
applications [1], [8], [10] that related to only one temporal vari-
able, the hepatitis study simultaneously requires considering mul-
tiple variables. The complex temporal abstraction done by data 
mining methods in D2MS allows us to discover combinations of 
basic temporal abstractions that characterize description patterns. 
Our data mining methods with temporal abstraction can be applied 
to other domains where we need process similar temporal data. 

The interactive and visual system D2MS provides us a powerful 
tool for complex temporal abstraction not only in combining ob-
tained abstractions but also in visualizing them in order to give a 
understanding of relationships between basic temporal abstrac-
tions. Not only D2MS, See5, and Clementine but many other ma-
chine learning methods can be applied to the abstracted data to 
find other kinds of new patterns/models in the hepatitis domain.   
The temporal abstraction approach presented in this paper is car-
ried out in the scope of an on going project in collaboration with 
medical doctors. The issues to be investigated in the next step in-
clude refinement of abstracted patterns (says, positions of peaks), 
the post-processing and interpretation of obtained complex tempo-
ral abstractions. In particular, a careful analysis of the interesting-
ness of obtained results from the statistical standpoint is under in-
vestigation by data miners and medical experts. Also, an investi-
gation of temporal patterns that pertain to the behavior of multiple 
variables is being considered. 
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