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1 Introduction

The meningitis dataset has been used for extracting meningitis
knowledge by learning and mining methods. This paper reports the
result of extracting knowledge from this dataset by a novel learning
method called LUPC that integrates separate-and-conquer rule in-
duction with association rule mining. We first briefly introduce the
basic ideas of LUPC then describe experiments, extracted knowl-
edge and the result evaluation. The extracted knowledge is con-
cerned with factors important for diagnosis (DTAG and DIAG2), for
detection of bacteria or virus (CULT_FIND and CULTURE) and for
predicting prognosis (C_COURSE and COURSE).

2 LUPC: Learning Unbalanced Positive Class

Consider the rule induction problem where we focus on learning a
minority target class seen as the positive class C*, denoted by Pos, and
all other classes as the negative class C7, denoted by Neg;, i.e., | Pos|
<< | Negl|. Denote by cov(R) the set of instances covered by a rule R
that is divided into two subsets of covered instances in Pos and Neg,
denoted by cov(R) = covt(R) U cov™ (R). Our task is to find a set of pre-
dictive and descriptive rules for C*, denoted by R+ = {R*+1, Rte, ..., R*g}
so that Pos < coviR+1) U cov(R*2) ... U cov(R*) and the discovered
rules are “best” in terms of high sensitivity as well positive predictive
value, and low false positive rate. Given thresholds o and B for accu-
racy and coverage ratio, a rule R is of-strong if acc(R) > o and
[cov+(R) [/|D| > B. Table 1 presents the scheme of algorithm LUPC
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Learn-positive-rule(Pos, Neg, minace, mincov) 10. return(RuleSet)

1. RuleSet=0

2. o, B < Initialize(Pos, Neg, minace, mincov) Procedure BestRulePos, Neg, o, B)

3. while (Pos # @ and (o, ) # (minace, mincov)) 11. CandidateRuleSet = &

4, NewRule < BestRule(Pos, Neg, 0000) 12. AttributeValuePairs((Pos, Neg, o, B)
5. if NewRule # @) 13. while StopCondition(Pos, Neg, o, f)
6. Pos < Pos ¥ Cover*(NewRule) 14. CandidateRules(Pos, Neg, o, B)
7. RuleSet «— RuleSet U NewRule 15. BestRule < First CandidateRule in
8. else Reduce(o, B) CandidateRuleSet

9. RuleSet < PostProcess(RuleSet) 16. return(BestRule)

Table 1. The scheme of algorithm LLUPC

for solving effectively the above problem. There are three essential
features of LUPC that make it possible to learn efficiently minority
classes in unbalanced datasets. Firstly, it carries out a search biasing
alternatively on accuracy and cover ratio with adaptive thresholds.
Secondly, it focuses on doing separate-send-conquer induction in the
target class with exploitation of the unbalanced property of datasets
that allows trying the beam search with a large beam search parame-
ter and one-sided selection. The following property shows the neces-
sary constraint on cov (R) for a rule R to be of-strong in terms of
covt(R) and the accuracy threshold. It will be used to reduce time of
scanning the large Negin generating and selecting candidate rules for
C+ given o, a rule R is not of-strong for any arbitrary B if cov (R) >
((1-oy/oxcovt(R). Thirdly, LUPC integrates pre-pruning and post-
pruning in a way that can avoid over-pruning.

3 Finding Rules from Meningitis Data

We use two methods for discretizing numerical attributes in the
meningitis data: entropy-based and rough set-based methods. The
entropy-based method often yields few intervals of values, and ig-
nores many attributes (15 out of 38 attributes). The rough set-based
method divides continuous attributes into more intervals of values
and do not ignore any attributes. From the discretized dataset we
created six derived datasets with the corresponding class attribute
is from DIAG, DIAG2, CULT_FIND, CULTURE, C_COURSE and
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Figure 1. Finding meningitis knowledge with LUPC

COURSE. We run LUPC on each of these datasets on two modes!
learning one target class and learning all classes. Experiments have
been done with fixed default parameters for finding rules: 95% for
minimum accuracy of a rule, 2 cases are minimum cover of a rule,
100 and 30 are numbers of candidate attribute-value pairs and
rules, respectively. Different rules were extracted and they are syn-
thesized in nearly 80 tables in the Excel format according to the de-
rived datasets and learning modes, for example:

IF LOC =[*-1) and
ONSET = ACUTE and
CSF_CELL = [1505-*) and
CELL_POLY = [431-%)
THEN class = BACTERIA [accuracy = 1.00 (12/12); cover = 0.086]

Based on synthesized tables of discovered rules, we have provided
the domain experts a number of observations and analysis that are
commonly concerned with the most frequent attributes in each class,
the significant attributes or attribute-value pairs, the significant
co-occurred attribute-values pairs, the strong rules with particu-
larly large coverage if available, and rules that may be exceptional.

Factors Important for Meningitis Diagnosis DIAG and DIAGZ2
From discovered rules for DIAG we observed that:

o most frequent attributes: Cell_Poly, Loc_Dat, Egg Focus, Focal,
Ct_Find.
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significant attributes or attribute-value pairs:

- “Cell_Poly > 220.5" for BACTE(E) and BACTERIA,

- “Cell_Poly < 220.5” for VIRUS and VIRUS(E),

- “Egg_Focus =+ for VIRUS(E),

- “Ct_find = abnormal” for ABSCESS.

significant co-occurred attribute-values pairs:

- “Cell_Poly < 220.5” AND “Egg_Focus = - for VIRUS,
“Cell_Poly < 220.5” AND “Focal = +” for VIRUS(E).

And from discovered rule for DIAG2:

most frequent attributes: Focal, Cell_Poly, Loc_Data, Egg_Focus,
Ct_Find.

significant or discriminant attributes or attribute-value pairs are
reconfirmed

- “Ct_find = abnormal” for ABSCESS,

- “Cell_Poly geq 220.5” for BACTE(E) and BACTERIA,

- “Cell_Poly < 220.5” for VIRUS and VIRUS(E).

significant co-occurred attribute-values pairs: reconfirmed the
above conclusions and some new as “Cell_Poly > 220.5" AND
“Onset = Acute” AND “Loc =-1.5" for BACTERIA.

rules with large coverage: rules for VIRUS

rules that may be special or typical: rule 1 for ABSCESS, rule 2
for BACTERIA.

A general observation is there are big groups of VIRUS cases that
share common symptoms (VIRUS rules with bigger coverage but
not very high accuracy) while the rules for BACTERIA are with
relatively smaller coverage but higher accuracy. The attribute
“ONSET” has high frequency but seems not significant in distin-
guishing diseases.

Factors for Predicting Prognosis C_COURSE and COURSE

From discovered rules for C COURSE we observed that:

most frequent attributes: Lasegue, Focal, Loc_Dat, Onset

Ct_Find.

significant or discriminant attributes or attribute-value pairs:

- for class “dead”: Locdat = +”, “Egg_wave = abnormal”,

- for class “negative”: “Onset = Acute”, “Lasegue = (07, “Focal = -,
“Cell_Mono > 107,

significant co-occurred attribute-values pairs:

- “Cell_Mono < 10” AND “Locdat =+ for class “dead”,
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- “Kgg_wave = abnormal” AND “Locdat = +” for class “dead”,
- “Kernig = 07 AND “Focal = -” AND “Crp < 4.8” for class “negative”,
- “Kernig = 0" AND “Focal = -~ AND “Csf_Cell in (30.5-1040)" for
class “negative”.
e rules with large coverage: rules from 5 to 17 for class “negative”.
e rules that may be special or typical: all rules for class “dead”,
rule 23 for class “negative”.

And form rules for COURSE:
o most frequent attributes: Lasegue, Focal, Locdat.
¢ gignificant or discriminant attributes or attribute-value pairs:

“w_ 2 “@ .

- “Focal = -7 in class “n” and “Focal = +” in class “p”,
- “Locdat = -” in class “n” and “Locdat = +” in class “p”,
- “Egg_wave =normal” in class “n”, “Egg_wave = abnormal” in “p”,
- “Cell_Mono > 10" in class “n” and “Cell_Mono < 10” in class “p”
- “Lasegue = 07 is popular in class “n”.
¢ gignificant co-occurred attribute-values pairs:
- “Lasegue = 0 AND “Focal = -7 AND “Crp < 4.8” in class “n”,
- “Lasegue = 0" AND “Cell_Mono > 1.0” in class “n”,
- “Local =+” AND “Focal = +” AND “Egg_wave = abnormal” in “p”,
- “Locdat = +7 AND “Cell_Mono < 1.0” in class “p”.
¢ rules with large coverage: most rules for class “n”.

“w_»

Two classes “n” and “p” can be distinguished by obtained rules.
Detection of Bacteria or Virus' CULTURE and CULT FIND

From discovered rules for CULTURE we observed that:
e most frequent attributes: Loc_Dat, Crp, Ct_Find, Csf_Cell.
¢ gignificant or discriminant attributes or attribute-value pairs:
- “Locdat = -7, “Crp < 4.8, “Cell_Mono > 10” are pupolar in class “-”,
- “Kgg wave = abnormal’, Ct_find = abnormal” are popular in
classes “he pes” and “strepto”
¢ gignificant co-occurred attribute-values pairs:
- “Loedat = -7 AND “Crp < 4.8” AND “Cell_Mono > 10" in class “-,
- “Egg_wave = abnormal” AND “Ct_find = abnormal” OR “Egg_wave
= abnormal” AND “Risk = sinutisis” in class “strepto”.
o rules with large coverage: most rules for class “-”

And from rules for CULTFIND:
o most frequent attributes: Loc_Dat, Egg Focus, Csf_Cell, Cf Find,
Risk.
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¢ gignificant or discriminant attributes or attribute-value pairs:

- “Locdat = -” 1s popular in “F” while “Locdat = +” is popular in “T”,

- “Crp < 4.8” is popular in “F” while “Crp > 4.8” is popular in “T7,

- “Cell_Mono > 10” is popular in “F” while “Cell_Mono < 10” is popu-
lar in “T",

- “Ct_find = normal” is popular in “F” while “Ct_find = abnormal” is
popular in “T”,

- “Risk = p” is popular in “F” while “Risk = n” OR “Risk = sinusitis”
are popular in “T”.

e significant co-occurred attribute-values pairs:

- “Onset = acute” AND “Crp < 4.8” in “F”,

- “LocDat = +” AND “Risk =n” in “T”.

4 Conclusion

We have briefly introduced method LUPC to learn the target posi-
tive class from large unbalanced datasets. The essence of LUPC is
its combination of separate-and-conquer rule induction with asso-
ciation rules mining, as well the use of dynamic multiple thresholds
and the property of unbalanced datasets. We apply LUPC to inves-
tigate the meningitis dataset. Many rules with high accuracy have
been found for factors important for diagnosis (DIAG and DIAG2),
for detection of bacteria or virus (CULT_FIND and CULTURE) and
for predicting prognosis (C_COURSE and COURSE). Appendixes 1
and 2 present a summarization of rules extracted for DIAG.
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Appendix 1. LUPC’s rule learning includes two modes: learning all classes and learn-
ing only one target class. These four tables show the numbers of cases which coverd rules
from “DIAG2” and “DIAG” obtained by LUPC with the condition of: (1) learning mode:
all classes, (2) Minimum accuracy: 95%, (3) Minimum cover: 2 cases, (4) Number candi-
date conditions: 100, (5) Number candidate rules: 30. Table 3 is the result on “DIAG2” dis-
cretized by entropy. Table 4 is the result on “DIAG2” discretized by Rosetta. Likewise, Ta-
ble 5 and Table 6 are the results on “DIAG?2” discretized by entropy and Rosetta.

Table6: Rules from "diag" discretized by Rosetta

class ID | (@) | (b) | (c)]| (d)

ABscess | 1|10] 6| 6|00

ABSCESS | 2| 10| 4| 4|00

Table3: Rules from "diag2" discretized by entropy ABSCESS | 3| 10| 4| 4|00
class |ID|(a)| (b) | (¢) | (&) ABSCESS | 4|10| 4| 4|00

BACTERIA |1 [ 10| 32| 32|02 BACTE(E) | 5| 10| 3| 3|00
BACTERIA |2 [ 1.0| 13| 13| 0.0 BACTE(E) | 6| 10| 3| 3|00
BACTERIA |3 [ 1.0| 12| 12| 00 (a) : accuracy BACTE(E) | 7|10| 3| 3|00
BACTERIA |4 | 10| 11| 11|00 Elc’; jﬂﬂmgs:gff Egrvriﬁdciiiis BACTEE) | 8| 10| 3| 3|00
BACTERIA [5 | 1.0| 8| 8|00 (d) : coverage of the rule BACTE(E) | 9|10| 2| 2[00
VIRUS |6 |09|100| 95|07 BACTE(E) | 10| 10| 2| 2|00
VIRUS |7 |09 88| 85|06 BACTERIA | 11| 10| 12| 12| 0.0
VIRUS |8 |09 83| 82|06 BACTERIA | 12| 10| 9| 9|00
VIRUS |7 |09 88| 85|06 BACTERIA | 13| 10| 8| 8|00
VIRUS |8 |09 83| 82|06 BACTERIA | 14| 10| 7| 7[00
BACTERIA | 15| 10| 7| 7[00

Table 5: Rules from "diag” discretized by entropy|BACTERIA | 16 | 1.0 6| 6|00

Table 4: Rules from "diag2" class D] (@) | (b)|(c)](d BACTERIA | 17| 10| 6| 6|00
discretized by Rosetta ABSCESS |1 |1.0| 6| 6|00 BACTERIA | 18 [1.0| 6| 6|00

class | ID | (a) | (b) | (c) | (d) ABSCESS |2 |1.0| 3| 3|00 BACTERIA | 19 10| 5| 5|00

BACTERIA |1 [ 1.0] 27| 27| 0.1 ABSCESS |3 [1.0| 2| 2|00 BACTERIA | 20| 10| 5| 5|00
BACTERIA |2 [ 1.0| 15| 15 [0.11 ABSCESS |4 [10| 2| 2|00 BACTERIA | 21| 10| 4| 4|00
BACTERIA |3 [ 1.0| 14| 14| 0.1 BACTE(E) |5 | 10| 3| 3|00 VIRUS | 22|09]| 22| 21|01
BACTERIA |4 [ 10| 12| 12/ 00 BACTE(E) |6 | 10| 2| 2|00 VIRUS | 23|09 21| 2001
BACTERIA |5 [1.0| 9| 9|00 BACTE(E) |7 | 10| 2| 2|00 VIRUS | 24 |09]| 21| 2001
BACTERIA |6 [1.0| 9| 9|00 BACTERIA |8 | 1.0| 11| 11| 0.0 VIRUS | 25[09| 21| 20 01
BACTERIA |7 [ 10| 9| 9|00 BACTERIA |9 | 10| 10| 10| 0.0 VIRUS | 26|09| 20| 19|01
BACTERIA |8 [ 10| 5| 5|00 BACTERIA |10 | 10| 8| 8|00 VIRUS | 27[1.0| 18| 18|01
VIRUS |9 |09 47| 45|03 BACTERIA |11 | 10| 8| 8|00 VIRUS | 28 |1.0| 15| 15|0.11
VIRUS (10|09 45| 43|03 BACTERIA |12 | 10| 8| 8|00 VIRUS | 29 |1.0| 15| 150.11
VIRUS (11 |09 45| 43|03 BACTERIA |13 | 10| 6| 6|00 VIRUS | 30| 1.0| 14| 14|01
VIRUS (12|09 45| 43|03 BACTERIA |14 | 10| 5| 5|00 VIRUS | 31[1.0| 14| 14|01
VIRUS (13|09 44| 42|03 VIRUS |15 [0.9| 61| 58| 0.4 VIRUS | 32|09]| 33| 32|02
VIRUS (14 | 09| 43| 41|03 VIRUS |16 [0.9| 60| 57 | 0.4 VIRUS(E) | 83| 1.0| 10| 10| 0.0
VIRUS (15| 09| 42| 40|03 VIRUS |17 |09 58| 56 | 0.4 VIRUS(E) | 84| 10| 10| 10| 0.0
VIRUS (16 | 09| 42| 40|03 VIRUS |18 [0.9| 54| 52|03 VIRUS(E) | 85| 10| 9| 9|00
VIRUS (17 |09 40| 38|02 VIRUS |20 [0.9| 43| 41|03 VIRUS(E) | 36| 10| 9| 9|00
VIRUS [18 | 09| 32| 31|02 VIRUS |19 |09 51| 49|03 VIRUS(E) | 87| 10| 9| 9|00
VIRUS (19 09| 32| 31|02 VIRUS(E) |21 [1.0| 11| 11|00 VIRUS(E) | 38| 10| 7| 7|00
VIRUS (20| 09| 29| 28|02 VIRUS(E) |22 [1.0| 11| 11|00 VIRUS(E) | 89| 10| 7| 7|00
VIRUS (21|09 28| 27|02 VIRUS(E) (23 [1.0| 10| 10| 0.0 VIRUS(E) | 40| 10| 7| 7|00
VIRUS (22 | 09| 27| 26| 01 VIRUS(E) |24 [1.0| 9| 9|00 VIRUS(E) | 41|10| 7| 7|00
VIRUS (23 |09]| 26| 25/ 0.1 VIRUS(E) |25 [1.0| 9| 9|00 VIRUS(E) | 42| 10| 7| 7|00
VIRUS (24 | 1.0| 23| 23| 01 VIRUS(E) |26 |1.0| 8| 8|00 VIRUS(E) | 43| 10| 6| 6|00
VIRUS (25 | 09| 23| 22|01 VIRUS(E) |27 [1.0| 6| 6|00 VIRUS(E) | 44| 10| 6| 6|00
VIRUS (26 | 09| 23| 22| 01 VIRUS(E) |28 [1.0| 7| 7|00 VIRUS(E) | 45| 10| 6| 6|00
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Appendix 2. Rules from “diag” with Rosetta discretization for all classes

Values of attributes contained in each rule
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