Reconstruction of histone modification network
from next-generation sequencing data
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Abstract—Post-translational modifications (PTMs) of his-
tone proteins play critical roles in establishing functionally
separated domains on chromatin and regulating important
biological processes, such as transcription. These modifications
often act in cooperative manner, forming complicated ‘histone
codes”. Elucidation of functional relationships among them
will, therefore, significantly increase our understanding of
cell differentiation, development, and cancer pathogenesis.
Biological evidence has shown that nucleosome positioning
can provide invaluable information about interactive effects
of PTMs. However, to our knowledge, none of previous works
has exploited this information in the reconstruction of histone
modification networks.

We propose a computational approach based on Bayesian
network to reconstruct a network representing functional
relationships of histone modifications. Qur approach employed
the search-and-score method to infer the network structure
using interactive information of histone modifications, which
is measured by the correlation between each modification with
nucleosome positioning. When applied on human CD4+ T
cell ChIP-Seq dataset, containing 38 different histone mod-
ifications and binding information of three other proteins,
H2A.Z, Polll and CTCF, our method not only outperformed
previous approaches in recovering known relationships but also
suggested many new ones, confirming its validity and efficiency.
Our unbiased method for inferring the network structure can
also be applied to reconstruct interaction networks of other
epigenetic factors.
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I. INTRODUCTION

Eukaryotic genomes are packaged into chromatin, a
highly condensed structure with fundamental repeating units,
the nucleosomes. Each nucleosome is formed by wrapping
147bp of DNA around a histone core, an octamer of proteins
that contains a central (H3 — H4), tetramer flanked on both
side by two H2A — H2B dimers [1]. The histone core is
subject to various covalent modifications occurring mostly
on its N-terminal residues, such as acetylation, methylation,
phosphorylation and ubiquitination. Biological evidence has
shown that histone modifications play important roles in
many cellular processes, such as transcription, replication
and DNA repair [2]. They are also implicated in the cell fate
determination and tumorigenesis [3], [4]. It is observed that
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different combinations of histone modifications can result in
distinct downstream events; and that they together help to
stabilize chromatin states and properly propagate such states
in cell division by forming broad domains on chromatin
[51, [6], led to the hypothesis of “histone codes” [7]. One
of such observations was reported by Wang et al., where
the authors discovered a “backbone” of 17 modifications
associated with 3286 human promoters [8]. Therefore, elu-
cidation of genome-wide histone modification patterns and
their functional implications will significantly increase our
knowledge of cell development process.

Technological advances for studying histone modifications
on a genomic scale, such as the combinations of chromatin
immunoprecipication (ChIP) with high-throughput technolo-
gies including DNA microarray (ChIP-Chip) or massively
parallel sequencing (ChIP-Seq), have made it possible to
generate genome-wide maps of various histone modifica-
tions [8], [9]. This leads to the development of a plethora
of computational methods to analyze such data, ranging
from methods for discovering concentrated combinatorial
modification patterns [10], [11] to the ones for identify-
ing large, dispersed epigenomic domains [12], [13]. For
example, an unsupervised method proposed by Hon et
al., named ChromaSig, can identify genome-wide histone
modification “motifs” and use these “motifs” to characterize
novel functional genomic elements [10].

Among the number of approaches for analyzing PTM
data, Bayesian network-based methods offer a promising
way to identify not only co-occurence patterns but also
the (in)dependence relationships of different histone mod-
ifications. Bayesian network (BN) is a class of proba-
bilistic graphical models, which has been widely applied
to reconstruct many kinds of cellular networks, such as
gene regulatory networks and protein interaction networks
[14], [15]. However, its application in analyzing histone
modification data is still limited. The first attempt applying
BN to reveal causal relationships of histone modifications
was proposed by Yu et al. [16]. Although shown to be
useful, their approach suffers from an important drawback.
The algorithm employed in their work to identify compelled
edges, which may represent causal relationships, requires



the data satisfying Causal Sufficiency assumption. In other
words, it assumes that no hidden confounder should exist
in the data [17], [18]. This assumption, unfortunately, is
not guaranteed in the context of histone modification data
because there are many other PTMs along with their bio-
logical functions yet to be known [5]. Lv et al., using the
same framework, proposed an alternative way to reconstruct
histone modification networks by inferring a BN on the
Closeness Measure (CM), which was proposed to capture
interactive information of histone modifications by their
correlations with DNA methylation data [19]. Their model,
however, is difficult to interpret from biological perspective.

Our approach is based on the observation that interactions
of histone modifications can cause change in nucleosome
distribution and, through this change, exert their regulatory
effects on cellular processes. For example, histone modifying
enzymes are known to affect histone-DNA interactions and
regulate nucleosome stability thereof [20], making the sites
occupied by nucleosomes more accessible to cellular ma-
chineries, as suggested in the “regulated nucleosome mobil-
ity” model [21]. The aim of our work, therefore, is twofold:
first, to describe a method to capture interactive information
of histone modifications from nucleosome positioning data;
second, to propose an unbiased method to infer a BN rep-
resenting (in)dependence relationships of histone modifica-
tions. When applied on human CD4+ T cell data, containing
38 histone modifications and binding information of three
proteins, H2A.Z, Polll, CTCF, our method outperformed
previous approaches in recovering known relationships. It
also revealed a number of unreported dependencies among
those modifications, which may suggest novel functional
insights into the regulatory mechanism by PTMs.

II. MATERIALS AND METHODS
A. Data Preparation

o Chromatin modification. Experimental ChIP-Seq data
of 20 histone methylations, 18 acetylations and 3 other
proteins, H2A.Z, Polll and CTCF, in human CD4+ T
cell were obtained from [8], [9].

e Nucleosome positioning. Nucleosome positioning data
in resting human CD4+ T cell were obtained from [22]

e The gene set. Gene expression data for resting human
CD4+ T cell were obtained from [22]. UCSC Known
Genes were extracted and then mapped to Affymetrix
U133P2 probe IDs using the tables provided in the
UCSC Genome Browser [23]. Genes without corre-
sponding U133P2 IDs were removed. If multiple genes
map to the same U133P2 ID, only one was retained. We
also removed genes from chromosomal regions marked
with “random” or genes from haplotype regions.

B. Interactive information of PTMs

In order to derive interactive information of histone
modifications, we firstly created tag profiles in promoter

regions (1'S.S+ 1kbp) for each modification and nucleosome
positioning. At first, each region was divided into non-
overlapping 200bp bins. Then, sequence tag locations
were shifted +65bp for hits on the positive strand and
-65bp for hits on the negative strand. The bin for each
tag was determined by the middle of the tag. Each tag
profile can then be represented as a 10-dimensional vector
TagProf = (biny,...,binyg), where bin; (i =1,...,10)
is the logarithm of the number of tags belonging to
the bin i**. If a bin has no tag, it was assigned the
value of 0. Interactive information of each modification
at a promoter region was measured as InterInfo =
Correlation(ModTagProf, NucTagProf), where
ModTagProf and NucTagProf are the tag profiles of
the modification and nucleosome positioning at that region,
respectively. In our work, we employed non-parametric
Spearman’s rank correlation since it has no prior assumption
on data distribution.

C. Bayesian Networks

1) Definition: A Bayesian network for a set of variables
X = {X;,Xo,...,X,,} is a probabilistic model consisting
of two components [36], [37]:

e A network structure S, which is a directed acyclic
graph, representing conditional (in)dependence rela-
tionships among variables in X

o A set P of local probability distributions associated
with each variable.

Markov and Faithfulness conditions guarantee that these two
components, (S, P), encode a joint probability distribution
on X, given by:

p(x =[] p(ilPay)
=1

in which the terms of the product on the right hand side
correspond to the local probability distributions P and Pa;
are the parents of ;. The number of parents of each variable
is usually small so a BN provides a compact and convenient
way to represent a joint probability distribution. In our
work, we learnt a BN on discrete variables, which means
that local probability distributions P can be represented by
Conditional Probability Tables (CPTs). Such a table specifies
the probability a variable takes a certain value given the
values of its parents.

2) Learning BN structure: As mentioned above, a BN
contains two components. Consequently, there are two steps
in learning a BN model from data: parameter learning, which
learns the local probability distributions P, and structure
learning, which learns the structure S. Because the main
target of our work is to uncover the (in)dependence rela-
tionships among the PTMs so we are interested in the latter
learning problem.

We employed the score-based search method to learn



a BN structure representing (in)dependence relationships
among PTMs. The aim of this method is to identify network
structures that “best” describe the data by some measure.
A search procedure, starting from an initial structure (a
graph without any edges), explores the space of possible
network structures step-by-step. At each step, it scores
the corresponding structure to identify the network with
maximum score. Because exhaustive search in the structure
space is infeasible [34], a greedy hill-climbing search was
used as our search strategy. To escape from local maximum,
a simulated annealing approach was used.

To score a candidate network, we used a Bayesian scoring
metric, which was originated from [35], and further devel-
oped by [36] as BDe (Bayesian metric with Dirichlet prior
and equivalence) metric:
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where n is the number of variables, N;j;j, is the number
of instances in the data set D having variable x; in state k
with its parents in the j-th instantiation in current structure
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and Nl-/j have the same meanings but correspond to prior
knowledge for the parameters. When no prior knowledge is
available, they can be estimated as Ni/j p = N/(riqi with N
is the equivalence sample size, r; is the number of states
of variable x; and ¢; is the number of instantiations of the
parents of variable x;. Finally, p(S) is the prior probability
of the structure. In our work, we assumed the uniform
distribution on the structure S.

D. Bootstrapping and Selection of The Cut-off Threshold

As the search-and-score method may output a different
network on each run (in our work, we only selected one
graph with the highest score as the output), we employed
the bootstrapping method, proposed by Friedman et al.[14],
to estimate the confidence level for each edge in the resulting
network. Given a dataset D of N instances, we created a
new dataset D’ by resampling from D with replacement
N times. Then a BN was inferred on D’. These two steps
of resampling and inferring a BN were repeated m times,
generating m different BNs. The confidence level of each
edge was estimated as the proportion of networks containing
that edge. A threshold, named 7, was chosen to decide
whether an edge was included in the resulting network or
not.

Because there is no positive training data about the
relationships among histone modifications, we derived the
following method to select a reasonable value for 7. At
first, we randomly split the input dataset D into two equal
parts, D1 and Do, T times. At each time, two bootstrapped
BNs corresponding Dy and Ds, namely partial BN; and

partial BNy, were learned as above-described. Then, we
defined a measure, named acc;, as:

ace: — #(partial BNiNpartial BN2)
A #(partial BN;)

,’i:{l,Q}

where the denominator is the number of edges of
partial BN; and the numerator is the number of edges that
appear in both partial BN, and partial BN,.

The selection criteria was then chosen as:

2
Stability = Z Var(ace;)
i=1

where Var(acc;) is the variance of acc; after T times of
data splitting and network learning steps above. It is easy
to see that acc; (i = {1,2}), and therefore Stability are
the functions of 7. We then chose 7 that gives Stability the
smallest value as the cut-off threshold.

IIT. RESULTS

A. Interactive Information of Histone Modifications Reflect
Their Regulatory Effects

Interactive information of different histone modifications
corresponding to the gene set was calculated as described in
Section 2.2. After this step, we received a table containing
10572 rows and 41 columns, where each row corresponds
to one gene, each column corresponds to one of 41 features
(38 histone modifications and 3 proteins), and each element
corresponds to the interactive information of the feature at
the promoter region of the gene. Histograms of interactive
information (Figure 1) showed that, modifications associated
with transcription activation (such as H3K4Mel/3) and
elongation (H3K36Me3), play more important role in shap-
ing nucleosome organization at promoters than repressive
(H3K9Me3, H4K20Me3) and less-well-understood PTMs
(H3K79Mel/2). This is consistent with the hypothesis that,
in order to activate the genes nucleosomes at promoters,
considered as the barrier to transcriptional machinery, should
be destabilized or even evicted from original locations and
this can be accomplished with the help of multitude of mod-
ifications on nucleosomes. Notably, the histogram of H2A.Z
showed that it does not have much effect on nucleosome
organization despite being a well-known euchromatin mark.
This is consistent with what was reported in [24].

B. Inference of Histone Modification Network

o Data Preprocessing. The contingency table described
in previous section was used as the input for the net-
work inference algorithm. Using interactive information
provides a natural way for data scaling because all
values will be in the range of [—1,1]. Our network
model only accepts discrete variables so the next step
is to discretize data into discrete values. In our work,
each feature was discretized into 3 categories using
interval discretization scheme. We chose the region
of £1kbp around the T'S'S as well as the 3-category



Table I
CRITERIA FOR THRESHOLD SELECTION

T | Stability
0.5 0.0135
0.55 0.0101
0.6 0.0077
0.65 0.0163
0.7 0.0197
0.75 0.0466
0.8 0.0245
0.85 0.049
0.9 0.0313

discretization scheme in our analysis because it has
been shown elsewhere [16] that these choices could
give a reasonable result on the data set.

e Setting for BN  Inference. The  structures
of static BNs were inferred with Banjo
(http://www.cs.duke.edu/~amink/software/banjo/),
which supports the network model described in
Section 2.3. Empirical running showed that, with more
than 1,500,000 search iterations the network score
was not significantly improved, so each search was
limited to this number of iterations.

o Threshold Derivation. The procedure described in Sec-
tion 2.4 was employed to derive a reasonable threshold
for confidence level related with each inferred rela-
tion (an edge of the resulting BN in this case). We
randomly split input data into two equal datasets 10
times (I'" = 10), resulting in 20 datasets. For each
dataset, we ran bootstrap procedure on it 100 times
(N = 100) and derived a corresponding consensus
BN. Each edge in the consensus BN has a related
confidence score, measured by the number of times
it appears in 100 bootstrapped BNs. Threshold 7 was
chosen in the range of [0.5;0.9] with the step of 0.05.
Table I shows the values of the selection criterion
Stability with corresponding values of 7. The value
of 7 that gives Stability the smallest value (7 = 0.6,
Stability = 0.0077) was chosen as the cut-off thresh-
old. Finally, all input data was used to infer the structure
of histone modification network. Bootstrap procedure
was run 1000 times to identify confidence scores for
each edge of the resulting network. After setting the
threshold 7 = 0.6, we received a BN containing 50
edges (Figure 2), representing functional relationships
among various histone modifications.

C. Network Analysis for Discovering Crosstalks among Hi-
stone Modifications

Although the modification state of each gene is likely
to appear differently in particular cell type or condition,
the dependencies found by our network model might
reflect functional relationships among various histone
modifications, which in general could be the same in

different cell types or under different conditions.

The resulting network contained three root nodes (node
without incoming edge), two are active modifications
(H3K18Ac, H3K27Ac), and one is elongation-related mark
(H3K79Mel). Among them, H3KI8Ac and H3K27Ac
are likely to play a central role, having out degrees
(number of edges pointing away from the node) of 4
and 8 (highest allover the network), correspondingly.
It included several chains of active modifications,
such as H3K4Ac — H4K91Ac — H4K16Ac,
H2BK120A¢ — H2BK20Ac — H4Kb5Ac —
HA4K8Ac — H4K12Ac downstream of H3KI8Ac,
and H3K4Me2 — H3K9Mel — H3K27Mel,
H3K9Ac — H3K4Me3 — Polll downstream
of H3K27Ac. A recent work has also reported
about the essential role of H3K18/K27Ac in ligand-
induced Polll recruitment on, and activation of,
nuclear receptor target genes [31]. Five modifications,
H3K79Mel/2/3, H2BK5Mel, H3R2Mel, which were
reported having quite similar diffuse profiles [13], were
found closely associated in our model by two chains,
H3K79Mel — H3K79Me2 — H3K79Me3 and
H3K79Mel — H4K20Mel — H2BKbMel —
H3R2Mel, suggesting that our method could identify the
relationships of not only concentrated modifications but also
dispersed epigenomic domains. The chain of H3K79Mel,
a less-well-understood modification, and H3K79Me2, an
elongation mark, and H3K79Me3, a repressive mark in
human, suggests a directional equilibrium among these
modifications.

Another important node, even not present at the root level,
is histone variant H2A.Z, which also had out degree of 4.
Our model inferred that H2A.Z is synergistically influenced
by H3K18/27Ac, and itself influences H3K4Me3. It
is known that H2A.Z is an important component of
euchromatin, whose function is to antagonize the repressive
chromatin state. How it is deposited to specific sites and
whether this process happens randomly or not, however,
remain elusive. Raisner et al. [29] have shown that
preventing acetylation by mutating specific lysine residues
of histone H3 and H4 in yeast would cause defect in H2A.Z
enrichment at several loci. Consistent with this, our model
suggested that acetylation of H3K18/27 may play a critical
role in regulating the deposition of H2A.Z onto chromatin.
Moreover, as previously reported [25], cells lacking H2A.Z
also had a reduced H3K4Me3 level at many promoters,
in other words, H3K4Me3 depended on H2A.Z for its
enrichment at promoters. Our network model confirmed this
dependency by the link H2A.Z — H3K4Me3, showing
its advantage over previous models, which suggested this
link in reverse direction, i.e. H3K4Me3 — H2A.Z [16],
[19].

From inferred relationships, we found that H3K4Me3
may be influenced not only by H2A.Z but also by H3K27Ac,



either directly or indirectly (through H3K9Ac). Tie et al.
[26] have reported about the correlation between H3K27Ac
and H3K4Me3 by observing their similar profiles at most
of investigated sites. Their observation was supported
by the fact that, Trithorax protein (TRX) and histone
acetyltransferase CBP together acetylates H3K27, and
TRX itself is a histone methyltransferase that specifically
trimethylates histone H3 on lysine 4 (H3K4Me3) [27].
Another work has also shown that the abundance and
“degree” of H3K4 methylation were dependent on histone
H3 acetylation [28]. These evidences provide support for
the links between H3K27Ac and H3K4Me3.

The resulting model also agreed with previous
ones in some confirmed relationships, such as
H3K4Me3 — Polll and H3K79Me2 — H4K20Mel
[16], [19]. The former was supported by the fact that Polll
binding is affected by the protein trxG, which catalyzes
H3K4Me3 [32], [33]. The latter was supported by a research
on mouse embryonic stem (ES) cell, which showed that
deficiency of DotlL, a H3K79 methyltransferase, would
cause reduced levels of H3K9Me and H4K20Me [30].

In addition to the relationships that were already
confirmed in literature, many new, unconfirmed relationships
among histone modifications were suggested by our model,
such as H4K20Mel and H2BKS5Mel, H3K4Me2 and
H2A.Z, H3K4Mel and H2BK5Mel, Polll and CTCF,
which were also reported in previous works [16], [19].
Taken together, it showed some overlap with, but was
not identical to, currently existing models. Moreover, it
correctly recovered the relationships representing important
crosstalks among various histone modifications and other
chromatin binding factors. This result confirms the validity
and efficiency of our network model.

IV. CONCLUSION

Chromatin is a highly compact structure for organizing
genomic material inside the cell nucleus. However, it is
not a passive entity but plays important roles in many
DNA-mediated processes. The histone proteins of this
structure are subject to numerous chemical modifications,
which may act independently or in concert to contribute
to regulatory functionality of chromatin. Elucidation of
functional relationships among these modifications will,
therefore, significantly improve our understanding of critical
cellular processes, such as transcription or pathogenesis.

We have proposed a novel Bayesian Network-based
computational  approach to reconstructing  histone
modification network. Our network model was built
on interactive information of histone modifications,
which was measured by the correlation between histone
modification and nucleosome positioning. We also derived
an unbiased method for inferring the structure of static
Bayesian networks. When applied on human CD4+ T cell

Chip-Seq data, our method outperformed previous ones in
recovering confirmed relationships. It also suggested many
new ones, which could help deepen our understanding of
regulatory mechanism by PTMs.
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Figure 1. Histograms of interactive information of PTMs with distinct regulatory roles ( transcription activation- and elongation-associated marks
(H3K4Mel/3, H3K36Me3), repressive marks (H3K9Me3, H4K20Me3), and less-well-understood marks (H3K79Mel/2)) and histone variant H2A.Z. X -
axis represents absolute interactive information value, Y -axis represents corresponding frequency






