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Recommendation	
  Systems

Recommender	
  systems	
  help	
  find	
  relevant	
  items	
  that	
  
match	
  the	
  user’s	
  interest

Leverage	
  large	
  amounts	
  of	
  user	
  interaction	
  data.	
  (aka	
  
collaborative	
  filtering)

Many	
  applications	
  – news,	
  movies,	
  songs,	
  product	
  
recommendation.
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Approach and Problem Space
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Practical consideration

Rating vs actions (click, purchase)

Explicit vs implicit feedback

Sparsity level

Data arrive over time

Cold start

Basic approaches

Matrix Factorization

Neighborhood methods

Linear Methods



Implicit Feedback
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(One-­class  collaborative  filtering)
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Implicit Feedback

Matrix elements are {1, ?}

Let’s try matrix factorization
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Implicit Feedback
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Ignore ”?” entries and complete the 

matrix

Low-rank matrix completion?

Doesn’t work

fill everything with 1 yields a rank 1 matrix
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Implicit Feedback: Weighted Matrix Factorization
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Turn “?” into 0 

Low-rank matrix factorization

Needs to weight down 0 entries.

How to optimize?

Stochastic gradient descend (SGD) 

needs down-sampling 0 entries

Exploit bi-convexity: Alternative 

Least Square (ALS)

Efficient since it exploits matrix sparsity

1 1
1 1 1

.      .      .      .      .      .  

.      

.        

.    

.      

1 1

1

1

?

?

?

?

? ?

? ??

? ??

1

1

1

1



Implicit Feedback

Neighborhood methods

SLIM (Sparse Linear Method) [state-of-the-art]
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Recommendation using Similarity Matrix 

R̂ = S⇥R

S
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user’s preference for each item. We denote by R(u) the set
of the items purchased by user u.

The goal in OC-CF is to learn a recommender, which for
our purposes is simply a matrix ˆR 2 Rm⇥n of the same size
as R. We call ˆR the recommendation matrix. As the entries
are real-valued, for each user u, we can sort the entries of
ˆRu: to obtain a predicted ranking over items. We evaluate
ˆR assuming we are in the top-N recommendation scenario
(Deshpande and Karypis 2004): here, the interest is in find-
ing ˆR such that the head of the ranked list for each user
comprises items she will enjoy.

The challenge in OC-CF is the lack of explicit negative
preference. A user not purchasing an item does not neces-
sarily indicate a negative preference: the user may simply
be unaware of the item. Henceforth, we say that (u, i) pairs
with Rui = 1 denote “known positive preference”, while
pairs with Rui = 0 denote “unknown preference”.

We now review some existing approaches to OC-CF. We
focus on approaches that rely only on information pro-
vided in R, and thus do not discuss approaches that ex-
ploit additional information, e.g. those that exploit an ex-
ogenous network amongst users or items (Yu et al. 2014;
Sedhain et al. 2014).

Neighbourhood methods
There are two broad types of neighbourhood methods. The
first type is item-based neighbourhood methods, where we
produce a recommendation matrix of the form

ˆR = RSI , (1)
where SI 2 Rn⇥n is an item-item similarity matrix. The
second type is user-based neighbourhood methods, which
effectively operate on RT instead of R, producing a recom-
mendation matrix of the form

ˆR = SUR (2)
where SU 2 Rm⇥m is a user-user similarity matrix. The
intuition for both types of method is simple: observe that in
item-based methods,

ˆRui =

X

i02I

Rui0 · Si0i.

That is, for a user u, one scores an item i as the sum of i’s
similarity to all other items that u enjoys. A similar intuition
holds for user-based methods.

Typically, one chooses the similarity matrix S
⇤

as a prede-
fined function of R, such as cosine similarity (Sarwar et al.
2001; Linden, Smith, and York 2003): for item-based meth-
ods, this is given by

Si0i =
RT

:iR:i0

||R:i||2||R:i0 ||2
.

Other examples are the Pearson correlation, Jaccard coef-
ficient and conditional probability (Deshpande and Karypis
2004). It is typical to sparsify S by retaining only top-k sim-
ilar entries in the similarity matrix.

Recommendation performance can be quite sensitive to
the choice of S, and the choice generally depends on the
problem domain. Therefore, neighbourhood methods are un-
able to adapt to the characteristics of the data at hand.

Matrix factorisation
Matrix factorisation methods are the de facto approach to
collaborative filtering with explicit feedback. The basic idea
is to embed users and items into some shared latent space
(Srebro and Jaakkola 2003; Koren, Bell, and Volinsky 2009).
Formally, let J 2 Rm⇥n

+ be some weighting matrix to be de-
fined shortly. Let ` : R ⇥ R ! R+ be some loss function,
typically squared loss `(y, ŷ) = (y � ŷ)2. Then, matrix fac-
torisation methods optimise

min

✓

X

u2U ,i2I

Jui · `(Rui, ˆRui(✓)) + ⌦(✓), (3)

where the recommendation matrix is2

ˆR(✓) = ATB (4)
for ✓ = {A,B}, and the regulariser ⌦(✓) is typically

⌦(✓) =
�

2

· (||A||2F + ||B||2F )

for some � > 0. The matrices A 2 RK⇥m,B 2 RK⇥n

are the latent representations of users and items respectively,
and K 2 N+ the latent dimension of the factorisation.

In standard CF applications with explicit negative feed-
back, one typically sets (Koren, Bell, and Volinsky 2009)
Jui = JRui > 0K, so that one only considers (user, item)
pairs with known preference information. In implicit feed-
back problems, this is not appropriate, as one will sim-
ply learn on the known positive preferences, and thus pre-
dict ˆRui = 1 uninformatively. An alternative is to set
Jui = 1 uniformly. This treats all absent purchases as in-
dications of a negative preference. The resulting approach is
termed PureSVD in (Cremonesi, Koren, and Turrin 2010),
and has been shown to perform surprisingly well in top-N
recommendation task for both explicit and implicit feedback
datasets (Cremonesi, Turrin, and Airoldi 2011).

As an intermediate between the two extreme weighting
schemes above, the WRMF method (Pan et al. 2008) sets
Jui to be

Jui = JRui = 0K + ↵ · JRui > 0K (5)
where ↵ assigns an importance weight to the observed rat-
ings. More sophisticated weighting schemes have also been
explored. In scenarios where there are multiple observations
for each (user, item) pair, (Hu, Koren, and Volinsky 2008)
considered a logarithmic weighting of these counts.

Bayesian personalised ranking (BPR)
An alternate strategy to adapt matrix factorisation to the im-
plicit feedback setting is the Bayesian Personalised Rank-
ing (BPR) model (Rendle et al. 2009). BPR optimises a loss
over (user, item) pairs, so that the known positive prefer-
ences score at least as high as the unknown preferences:

min

✓

X

u2U,i2R(u),i0 /2R(u)

`(1, ˆRui(✓)� ˆRui0(✓))+⌦(✓), (6)

where `(1, v) = log(1+e�v
) is the logistic loss, and ˆR is as

per Equation 4. Intuitively, this does not disallow high scores
for items with unknown preferences, but simply places these
scores below that of an item with a positive preference.

2We omit user- and item- bias terms for brevity.
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of the items purchased by user u.

The goal in OC-CF is to learn a recommender, which for
our purposes is simply a matrix ˆR 2 Rm⇥n of the same size
as R. We call ˆR the recommendation matrix. As the entries
are real-valued, for each user u, we can sort the entries of
ˆRu: to obtain a predicted ranking over items. We evaluate
ˆR assuming we are in the top-N recommendation scenario
(Deshpande and Karypis 2004): here, the interest is in find-
ing ˆR such that the head of the ranked list for each user
comprises items she will enjoy.

The challenge in OC-CF is the lack of explicit negative
preference. A user not purchasing an item does not neces-
sarily indicate a negative preference: the user may simply
be unaware of the item. Henceforth, we say that (u, i) pairs
with Rui = 1 denote “known positive preference”, while
pairs with Rui = 0 denote “unknown preference”.

We now review some existing approaches to OC-CF. We
focus on approaches that rely only on information pro-
vided in R, and thus do not discuss approaches that ex-
ploit additional information, e.g. those that exploit an ex-
ogenous network amongst users or items (Yu et al. 2014;
Sedhain et al. 2014).

Neighbourhood methods
There are two broad types of neighbourhood methods. The
first type is item-based neighbourhood methods, where we
produce a recommendation matrix of the form

ˆR = RSI , (1)
where SI 2 Rn⇥n is an item-item similarity matrix. The
second type is user-based neighbourhood methods, which
effectively operate on RT instead of R, producing a recom-
mendation matrix of the form

ˆR = SUR (2)
where SU 2 Rm⇥m is a user-user similarity matrix. The
intuition for both types of method is simple: observe that in
item-based methods,

ˆRui =

X

i02I

Rui0 · Si0i.

That is, for a user u, one scores an item i as the sum of i’s
similarity to all other items that u enjoys. A similar intuition
holds for user-based methods.

Typically, one chooses the similarity matrix S
⇤

as a prede-
fined function of R, such as cosine similarity (Sarwar et al.
2001; Linden, Smith, and York 2003): for item-based meth-
ods, this is given by

Si0i =
RT

:iR:i0

||R:i||2||R:i0 ||2
.

Other examples are the Pearson correlation, Jaccard coef-
ficient and conditional probability (Deshpande and Karypis
2004). It is typical to sparsify S by retaining only top-k sim-
ilar entries in the similarity matrix.

Recommendation performance can be quite sensitive to
the choice of S, and the choice generally depends on the
problem domain. Therefore, neighbourhood methods are un-
able to adapt to the characteristics of the data at hand.

Matrix factorisation
Matrix factorisation methods are the de facto approach to
collaborative filtering with explicit feedback. The basic idea
is to embed users and items into some shared latent space
(Srebro and Jaakkola 2003; Koren, Bell, and Volinsky 2009).
Formally, let J 2 Rm⇥n

+ be some weighting matrix to be de-
fined shortly. Let ` : R ⇥ R ! R+ be some loss function,
typically squared loss `(y, ŷ) = (y � ŷ)2. Then, matrix fac-
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where the recommendation matrix is2

ˆR(✓) = ATB (4)
for ✓ = {A,B}, and the regulariser ⌦(✓) is typically

⌦(✓) =
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2

· (||A||2F + ||B||2F )

for some � > 0. The matrices A 2 RK⇥m,B 2 RK⇥n

are the latent representations of users and items respectively,
and K 2 N+ the latent dimension of the factorisation.

In standard CF applications with explicit negative feed-
back, one typically sets (Koren, Bell, and Volinsky 2009)
Jui = JRui > 0K, so that one only considers (user, item)
pairs with known preference information. In implicit feed-
back problems, this is not appropriate, as one will sim-
ply learn on the known positive preferences, and thus pre-
dict ˆRui = 1 uninformatively. An alternative is to set
Jui = 1 uniformly. This treats all absent purchases as in-
dications of a negative preference. The resulting approach is
termed PureSVD in (Cremonesi, Koren, and Turrin 2010),
and has been shown to perform surprisingly well in top-N
recommendation task for both explicit and implicit feedback
datasets (Cremonesi, Turrin, and Airoldi 2011).

As an intermediate between the two extreme weighting
schemes above, the WRMF method (Pan et al. 2008) sets
Jui to be

Jui = JRui = 0K + ↵ · JRui > 0K (5)
where ↵ assigns an importance weight to the observed rat-
ings. More sophisticated weighting schemes have also been
explored. In scenarios where there are multiple observations
for each (user, item) pair, (Hu, Koren, and Volinsky 2008)
considered a logarithmic weighting of these counts.

Bayesian personalised ranking (BPR)
An alternate strategy to adapt matrix factorisation to the im-
plicit feedback setting is the Bayesian Personalised Rank-
ing (BPR) model (Rendle et al. 2009). BPR optimises a loss
over (user, item) pairs, so that the known positive prefer-
ences score at least as high as the unknown preferences:

min

✓

X

u2U,i2R(u),i0 /2R(u)

`(1, ˆRui(✓)� ˆRui0(✓))+⌦(✓), (6)

where `(1, v) = log(1+e�v
) is the logistic loss, and ˆR is as

per Equation 4. Intuitively, this does not disallow high scores
for items with unknown preferences, but simply places these
scores below that of an item with a positive preference.

2We omit user- and item- bias terms for brevity.
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user’s preference for each item. We denote by R(u) the set
of the items purchased by user u.

The goal in OC-CF is to learn a recommender, which for
our purposes is simply a matrix ˆR 2 Rm⇥n of the same size
as R. We call ˆR the recommendation matrix. As the entries
are real-valued, for each user u, we can sort the entries of
ˆRu: to obtain a predicted ranking over items. We evaluate
ˆR assuming we are in the top-N recommendation scenario
(Deshpande and Karypis 2004): here, the interest is in find-
ing ˆR such that the head of the ranked list for each user
comprises items she will enjoy.

The challenge in OC-CF is the lack of explicit negative
preference. A user not purchasing an item does not neces-
sarily indicate a negative preference: the user may simply
be unaware of the item. Henceforth, we say that (u, i) pairs
with Rui = 1 denote “known positive preference”, while
pairs with Rui = 0 denote “unknown preference”.

We now review some existing approaches to OC-CF. We
focus on approaches that rely only on information pro-
vided in R, and thus do not discuss approaches that ex-
ploit additional information, e.g. those that exploit an ex-
ogenous network amongst users or items (Yu et al. 2014;
Sedhain et al. 2014).

Neighbourhood methods
There are two broad types of neighbourhood methods. The
first type is item-based neighbourhood methods, where we
produce a recommendation matrix of the form

ˆR = RSI , (1)
where SI 2 Rn⇥n is an item-item similarity matrix. The
second type is user-based neighbourhood methods, which
effectively operate on RT instead of R, producing a recom-
mendation matrix of the form

ˆR = SUR (2)
where SU 2 Rm⇥m is a user-user similarity matrix. The
intuition for both types of method is simple: observe that in
item-based methods,

ˆRui =

X

i02I

Rui0 · Si0i.

That is, for a user u, one scores an item i as the sum of i’s
similarity to all other items that u enjoys. A similar intuition
holds for user-based methods.

Typically, one chooses the similarity matrix S
⇤

as a prede-
fined function of R, such as cosine similarity (Sarwar et al.
2001; Linden, Smith, and York 2003): for item-based meth-
ods, this is given by

Si0i =
RT

:iR:i0

||R:i||2||R:i0 ||2
.

Other examples are the Pearson correlation, Jaccard coef-
ficient and conditional probability (Deshpande and Karypis
2004). It is typical to sparsify S by retaining only top-k sim-
ilar entries in the similarity matrix.

Recommendation performance can be quite sensitive to
the choice of S, and the choice generally depends on the
problem domain. Therefore, neighbourhood methods are un-
able to adapt to the characteristics of the data at hand.

Matrix factorisation
Matrix factorisation methods are the de facto approach to
collaborative filtering with explicit feedback. The basic idea
is to embed users and items into some shared latent space
(Srebro and Jaakkola 2003; Koren, Bell, and Volinsky 2009).
Formally, let J 2 Rm⇥n

+ be some weighting matrix to be de-
fined shortly. Let ` : R ⇥ R ! R+ be some loss function,
typically squared loss `(y, ŷ) = (y � ŷ)2. Then, matrix fac-
torisation methods optimise

min

✓

X

u2U ,i2I

Jui · `(Rui, ˆRui(✓)) + ⌦(✓), (3)

where the recommendation matrix is2

ˆR(✓) = ATB (4)
for ✓ = {A,B}, and the regulariser ⌦(✓) is typically

⌦(✓) =
�

2

· (||A||2F + ||B||2F )

for some � > 0. The matrices A 2 RK⇥m,B 2 RK⇥n

are the latent representations of users and items respectively,
and K 2 N+ the latent dimension of the factorisation.

In standard CF applications with explicit negative feed-
back, one typically sets (Koren, Bell, and Volinsky 2009)
Jui = JRui > 0K, so that one only considers (user, item)
pairs with known preference information. In implicit feed-
back problems, this is not appropriate, as one will sim-
ply learn on the known positive preferences, and thus pre-
dict ˆRui = 1 uninformatively. An alternative is to set
Jui = 1 uniformly. This treats all absent purchases as in-
dications of a negative preference. The resulting approach is
termed PureSVD in (Cremonesi, Koren, and Turrin 2010),
and has been shown to perform surprisingly well in top-N
recommendation task for both explicit and implicit feedback
datasets (Cremonesi, Turrin, and Airoldi 2011).

As an intermediate between the two extreme weighting
schemes above, the WRMF method (Pan et al. 2008) sets
Jui to be

Jui = JRui = 0K + ↵ · JRui > 0K (5)
where ↵ assigns an importance weight to the observed rat-
ings. More sophisticated weighting schemes have also been
explored. In scenarios where there are multiple observations
for each (user, item) pair, (Hu, Koren, and Volinsky 2008)
considered a logarithmic weighting of these counts.

Bayesian personalised ranking (BPR)
An alternate strategy to adapt matrix factorisation to the im-
plicit feedback setting is the Bayesian Personalised Rank-
ing (BPR) model (Rendle et al. 2009). BPR optimises a loss
over (user, item) pairs, so that the known positive prefer-
ences score at least as high as the unknown preferences:

min

✓

X

u2U,i2R(u),i0 /2R(u)

`(1, ˆRui(✓)� ˆRui0(✓))+⌦(✓), (6)

where `(1, v) = log(1+e�v
) is the logistic loss, and ˆR is as

per Equation 4. Intuitively, this does not disallow high scores
for items with unknown preferences, but simply places these
scores below that of an item with a positive preference.

2We omit user- and item- bias terms for brevity.

• S entries = { Jaccard, Cosine} distance between rows

• Keep only top k most similar items

• Note: this algorithm does not optimize any objective function

• Fast, and a good first baseline!
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Sparse Linear Method (SLIM)
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• Similarity matrix S = W

• Effectively trying to learn item-to-item or user-user similarities

• Requires solving a large number of regression problems  for a large design matrix R

• Slow!!!

user’s preference for each item. We denote by R(u) the set
of the items purchased by user u.

The goal in OC-CF is to learn a recommender, which for
our purposes is simply a matrix ˆR 2 Rm⇥n of the same size
as R. We call ˆR the recommendation matrix. As the entries
are real-valued, for each user u, we can sort the entries of
ˆRu: to obtain a predicted ranking over items. We evaluate
ˆR assuming we are in the top-N recommendation scenario
(Deshpande and Karypis 2004): here, the interest is in find-
ing ˆR such that the head of the ranked list for each user
comprises items she will enjoy.

The challenge in OC-CF is the lack of explicit negative
preference. A user not purchasing an item does not neces-
sarily indicate a negative preference: the user may simply
be unaware of the item. Henceforth, we say that (u, i) pairs
with Rui = 1 denote “known positive preference”, while
pairs with Rui = 0 denote “unknown preference”.

We now review some existing approaches to OC-CF. We
focus on approaches that rely only on information pro-
vided in R, and thus do not discuss approaches that ex-
ploit additional information, e.g. those that exploit an ex-
ogenous network amongst users or items (Yu et al. 2014;
Sedhain et al. 2014).

Neighbourhood methods
There are two broad types of neighbourhood methods. The
first type is item-based neighbourhood methods, where we
produce a recommendation matrix of the form

ˆR = RSI , (1)
where SI 2 Rn⇥n is an item-item similarity matrix. The
second type is user-based neighbourhood methods, which
effectively operate on RT instead of R, producing a recom-
mendation matrix of the form

ˆR = SUR (2)
where SU 2 Rm⇥m is a user-user similarity matrix. The
intuition for both types of method is simple: observe that in
item-based methods,

ˆRui =

X

i02I

Rui0 · Si0i.

That is, for a user u, one scores an item i as the sum of i’s
similarity to all other items that u enjoys. A similar intuition
holds for user-based methods.

Typically, one chooses the similarity matrix S
⇤

as a prede-
fined function of R, such as cosine similarity (Sarwar et al.
2001; Linden, Smith, and York 2003): for item-based meth-
ods, this is given by

Si0i =
RT

:iR:i0

||R:i||2||R:i0 ||2
.

Other examples are the Pearson correlation, Jaccard coef-
ficient and conditional probability (Deshpande and Karypis
2004). It is typical to sparsify S by retaining only top-k sim-
ilar entries in the similarity matrix.

Recommendation performance can be quite sensitive to
the choice of S, and the choice generally depends on the
problem domain. Therefore, neighbourhood methods are un-
able to adapt to the characteristics of the data at hand.

Matrix factorisation
Matrix factorisation methods are the de facto approach to
collaborative filtering with explicit feedback. The basic idea
is to embed users and items into some shared latent space
(Srebro and Jaakkola 2003; Koren, Bell, and Volinsky 2009).
Formally, let J 2 Rm⇥n

+ be some weighting matrix to be de-
fined shortly. Let ` : R ⇥ R ! R+ be some loss function,
typically squared loss `(y, ŷ) = (y � ŷ)2. Then, matrix fac-
torisation methods optimise

min

✓

X

u2U ,i2I

Jui · `(Rui, ˆRui(✓)) + ⌦(✓), (3)

where the recommendation matrix is2

ˆR(✓) = ATB (4)
for ✓ = {A,B}, and the regulariser ⌦(✓) is typically

⌦(✓) =
�

2

· (||A||2F + ||B||2F )

for some � > 0. The matrices A 2 RK⇥m,B 2 RK⇥n

are the latent representations of users and items respectively,
and K 2 N+ the latent dimension of the factorisation.

In standard CF applications with explicit negative feed-
back, one typically sets (Koren, Bell, and Volinsky 2009)
Jui = JRui > 0K, so that one only considers (user, item)
pairs with known preference information. In implicit feed-
back problems, this is not appropriate, as one will sim-
ply learn on the known positive preferences, and thus pre-
dict ˆRui = 1 uninformatively. An alternative is to set
Jui = 1 uniformly. This treats all absent purchases as in-
dications of a negative preference. The resulting approach is
termed PureSVD in (Cremonesi, Koren, and Turrin 2010),
and has been shown to perform surprisingly well in top-N
recommendation task for both explicit and implicit feedback
datasets (Cremonesi, Turrin, and Airoldi 2011).

As an intermediate between the two extreme weighting
schemes above, the WRMF method (Pan et al. 2008) sets
Jui to be

Jui = JRui = 0K + ↵ · JRui > 0K (5)
where ↵ assigns an importance weight to the observed rat-
ings. More sophisticated weighting schemes have also been
explored. In scenarios where there are multiple observations
for each (user, item) pair, (Hu, Koren, and Volinsky 2008)
considered a logarithmic weighting of these counts.

Bayesian personalised ranking (BPR)
An alternate strategy to adapt matrix factorisation to the im-
plicit feedback setting is the Bayesian Personalised Rank-
ing (BPR) model (Rendle et al. 2009). BPR optimises a loss
over (user, item) pairs, so that the known positive prefer-
ences score at least as high as the unknown preferences:

min

✓

X

u2U,i2R(u),i0 /2R(u)

`(1, ˆRui(✓)� ˆRui0(✓))+⌦(✓), (6)

where `(1, v) = log(1+e�v
) is the logistic loss, and ˆR is as

per Equation 4. Intuitively, this does not disallow high scores
for items with unknown preferences, but simply places these
scores below that of an item with a positive preference.

2We omit user- and item- bias terms for brevity.

SLIM
SLIM (Ning and Karypis 2011) directly learns an item-
similarity matrix W 2 Rn⇥n via

min

W2C

||R�RW||2F +

�

2

||W||2F + µ||W||1, (7)

where �, µ > 0 are appropriate constants, and
C = {W 2 Rn⇥n

: diag(W) = 0,W � 0}. (8)
Here, || · ||1 is the elementwise `1 norm of W which encour-
ages sparsity, and the constraint diag(W) = 0 prevents a
trivial solution of W = In⇥n. The nonnegativity constraint
offers interpretability, but (Levy and Jack 2013) showed that
it can be ignored without affecting performance. Given a
learned W, SLIM produces a recommendation matrix

ˆR(✓) = RW.

Thus, SLIM can be seen as an item-based neighbourhood
approach where the similarity matrix S is learned from data.

The LRec Model
We now describe LRec, our approach to OC-CF based on
linear classification. Define a matrix X 2 Rn⇥m by

X = RT ,

and, for each u 2 U , define a vector y(u) 2 {±1}n by:

y(u)
= 2Ru: � 1.

Then, LRec solves

min

✓

X

u2U

X

i2I

`(y(u)
i ,Xi:w

(u)
) + ⌦(✓), (9)

where ` is some convex loss function, and ✓ = {w(u)}u2U

.
Each w(u) 2 Rm, and so we can equivalently think of ✓ =

{W} for some W 2 Rm⇥m, with w(u)
= W:u. Given a

learned W, LRec produces a recommendation matrix
ˆR(✓) = WTR. (10)

In the sequel, we will employ ⌦(✓) = �
2 ||W||2F . We shall

also choose ` to be the logistic loss, `(y, v) = log(1+e�yv
),

which we favour due to the existence of efficient solvers for
linear logistic regression, such as LIBLINEAR (Fan et al.
2008), and its suitability for estimating class-probabilities,
which we shall see is appropriate for OC-CF problems.

Equation 9 can be interpreted as a linear classification
model for each user u. For each such model, we have a
separate training example corresponding to each item in the
dataset. The feature vector for each item comprises the pur-
chase history for all users, including the one in considera-
tion3. The label for each item is simply whether or not the
user in consideration purchased it. Each Wuu0 can be seen
as a weight indicating the relevance of the purchases of user
u in predicting the purchases of the user u0.

The above assumes the use of a linear kernel for the under-
lying classification model. In principle, one could also use a
nonlinear kernel. However, we did not explore this owing to
the strong performance of linear logistic regression, and the
comparatively slower training of kernel methods.

3This is only done for the training purchases of each user.
Therefore, there is no leakage of test purchases into the model.

Properties of LRec
Several observations are worth emphasising at this point.
First, training of the model is highly parallelisable across the
users, as the weights w(u) do not depend on each other. Par-
allelisation may thus be conducted without distributed com-
munication. Further, the feature matrix X is identical across
all users u. Therefore, this matrix can be shared across all
such parallel executions of a per-user model, which is useful
on a multi-core architecture.

Second, the feature matrix for each model is highly
sparse: we expect that for most items, only a small fraction
of users will have purchased them. This means that the op-
timisation of each user’s model can be done efficiently, em-
ploying e.g. sparse matrix-vector computations. Also, when
m � n, optimising the dual objective reduces training time
significantly over optimising the primal.

Third, with a large number of users, we have a high-
dimensional feature representation, which introduces the ap-
parent risk of overfitting. Our use of `2 regularisation miti-
gates this issue. Further, observe that if we optimise the dual
objective, the effective number of parameters for each user
is simply the total number of items n, which may be consid-
erably smaller than m.

Fourth, the use of `2 regularisation is crucial beyond its
value in preventing overfitting. Recall that for each user u’s
model, that user’s purchase history is included as a feature.
Without regularisation, then, the solution to Equation 9 is
trivial: we simply let Wuu0

= 0 for all u 6= u0, and let
Wuu ! +1. However, with `2 regularisation, such a solu-
tion is penalised. What is favoured instead is a spreading of
weight across other similar users.

Fifth, the objective in Equation 9 is strictly convex. There-
fore, there are no issues of local optima.

Sixth, in the model for each user, LRec treats unknown
preferences as negative examples. It appears that this falls
into the trap of suppressing preferences for items that the
user is unaware of. However, we can view the learning prob-
lem for each user as one of learning from positive and un-
labelled data. (Elkan and Noto 2008) proved a surprising
fact about learning from such data, namely, that for the pur-
poses of ranking, it suffices to simply treat the unlabelled ex-
amples as negative, and estimate class-probabilities. As we
are only interested in ranking performance for top-N rec-
ommendation, this justifies treating unknown preferences as
negative, provided we choose an ` in Equation 9 that is capa-
ble of estimating class-probabilities, e.g. logistic (`(y, v) =
log(1 + e�yv

)) or squared (`(y, v) = (1� yv)2) loss.

Relation to existing methods
We now contrast LRec to existing methods for recommen-
dation with implicit feedback. We shall argue that LRec is
the only proposed method (to our knowledge) that is learn-
ing based, with a convex objective that is efficient to train in
parallel, and which produces user-personalised predictions.

Relation to SLIM The model most closely related to
LRec is SLIM (Equation 7). To see the connection, observe
that we may rewrite SLIM as (see also (Ning and Karypis
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user’s preference for each item. We denote by R(u) the set
of the items purchased by user u.

The goal in OC-CF is to learn a recommender, which for
our purposes is simply a matrix ˆR 2 Rm⇥n of the same size
as R. We call ˆR the recommendation matrix. As the entries
are real-valued, for each user u, we can sort the entries of
ˆRu: to obtain a predicted ranking over items. We evaluate
ˆR assuming we are in the top-N recommendation scenario
(Deshpande and Karypis 2004): here, the interest is in find-
ing ˆR such that the head of the ranked list for each user
comprises items she will enjoy.

The challenge in OC-CF is the lack of explicit negative
preference. A user not purchasing an item does not neces-
sarily indicate a negative preference: the user may simply
be unaware of the item. Henceforth, we say that (u, i) pairs
with Rui = 1 denote “known positive preference”, while
pairs with Rui = 0 denote “unknown preference”.

We now review some existing approaches to OC-CF. We
focus on approaches that rely only on information pro-
vided in R, and thus do not discuss approaches that ex-
ploit additional information, e.g. those that exploit an ex-
ogenous network amongst users or items (Yu et al. 2014;
Sedhain et al. 2014).

Neighbourhood methods
There are two broad types of neighbourhood methods. The
first type is item-based neighbourhood methods, where we
produce a recommendation matrix of the form

ˆR = RSI , (1)
where SI 2 Rn⇥n is an item-item similarity matrix. The
second type is user-based neighbourhood methods, which
effectively operate on RT instead of R, producing a recom-
mendation matrix of the form

ˆR = SUR (2)
where SU 2 Rm⇥m is a user-user similarity matrix. The
intuition for both types of method is simple: observe that in
item-based methods,

ˆRui =

X

i02I

Rui0 · Si0i.

That is, for a user u, one scores an item i as the sum of i’s
similarity to all other items that u enjoys. A similar intuition
holds for user-based methods.

Typically, one chooses the similarity matrix S
⇤

as a prede-
fined function of R, such as cosine similarity (Sarwar et al.
2001; Linden, Smith, and York 2003): for item-based meth-
ods, this is given by

Si0i =
RT

:iR:i0

||R:i||2||R:i0 ||2
.

Other examples are the Pearson correlation, Jaccard coef-
ficient and conditional probability (Deshpande and Karypis
2004). It is typical to sparsify S by retaining only top-k sim-
ilar entries in the similarity matrix.

Recommendation performance can be quite sensitive to
the choice of S, and the choice generally depends on the
problem domain. Therefore, neighbourhood methods are un-
able to adapt to the characteristics of the data at hand.

Matrix factorisation
Matrix factorisation methods are the de facto approach to
collaborative filtering with explicit feedback. The basic idea
is to embed users and items into some shared latent space
(Srebro and Jaakkola 2003; Koren, Bell, and Volinsky 2009).
Formally, let J 2 Rm⇥n

+ be some weighting matrix to be de-
fined shortly. Let ` : R ⇥ R ! R+ be some loss function,
typically squared loss `(y, ŷ) = (y � ŷ)2. Then, matrix fac-
torisation methods optimise

min

✓

X

u2U ,i2I

Jui · `(Rui, ˆRui(✓)) + ⌦(✓), (3)

where the recommendation matrix is2

ˆR(✓) = ATB (4)
for ✓ = {A,B}, and the regulariser ⌦(✓) is typically

⌦(✓) =
�

2

· (||A||2F + ||B||2F )

for some � > 0. The matrices A 2 RK⇥m,B 2 RK⇥n

are the latent representations of users and items respectively,
and K 2 N+ the latent dimension of the factorisation.

In standard CF applications with explicit negative feed-
back, one typically sets (Koren, Bell, and Volinsky 2009)
Jui = JRui > 0K, so that one only considers (user, item)
pairs with known preference information. In implicit feed-
back problems, this is not appropriate, as one will sim-
ply learn on the known positive preferences, and thus pre-
dict ˆRui = 1 uninformatively. An alternative is to set
Jui = 1 uniformly. This treats all absent purchases as in-
dications of a negative preference. The resulting approach is
termed PureSVD in (Cremonesi, Koren, and Turrin 2010),
and has been shown to perform surprisingly well in top-N
recommendation task for both explicit and implicit feedback
datasets (Cremonesi, Turrin, and Airoldi 2011).

As an intermediate between the two extreme weighting
schemes above, the WRMF method (Pan et al. 2008) sets
Jui to be

Jui = JRui = 0K + ↵ · JRui > 0K (5)
where ↵ assigns an importance weight to the observed rat-
ings. More sophisticated weighting schemes have also been
explored. In scenarios where there are multiple observations
for each (user, item) pair, (Hu, Koren, and Volinsky 2008)
considered a logarithmic weighting of these counts.

Bayesian personalised ranking (BPR)
An alternate strategy to adapt matrix factorisation to the im-
plicit feedback setting is the Bayesian Personalised Rank-
ing (BPR) model (Rendle et al. 2009). BPR optimises a loss
over (user, item) pairs, so that the known positive prefer-
ences score at least as high as the unknown preferences:

min

✓

X

u2U,i2R(u),i0 /2R(u)

`(1, ˆRui(✓)� ˆRui0(✓))+⌦(✓), (6)

where `(1, v) = log(1+e�v
) is the logistic loss, and ˆR is as

per Equation 4. Intuitively, this does not disallow high scores
for items with unknown preferences, but simply places these
scores below that of an item with a positive preference.

2We omit user- and item- bias terms for brevity.
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where �, µ > 0 are appropriate constants, and

C = {W 2 Rn⇥n : diag(W) = 0,W � 0}. (6)

Here, || · ||1 denotes the elementwise `1 norm of W so as
to encourage sparsity, and the constraint diag(W) = 0 pre-
vents a trivial solution of W = In⇥n. SLIM is equivalent to
an item-based neighbourhood approach where the similarity
matrix S = W is learned from the data. In a related linear
model for OC-CF [13], the authors report very good perfor-
mance, but the proposed method is computationally expen-
sive, which restricts its applicability in real world problems.

Linear methods are attractive for several reasons. They
have superior performance, and unlike neighborhood meth-
ods, they adapt with the data as the parameters are learned
from data itself. Furthermore, the recommendations are eas-
ily interpretable. However, linear methods can be computa-
tionally expensive as they require solving a large number of
regression subproblems with a big design matrix R. This can
scale quadratically with the order of R, or worse.

2.4 Randomized SVD
SVD is the archetypal matrix factorization algorithm and has
been widely used in machine learning for dimensionality re-
duction. However, SVD is computationally expensive and not
scalable to large scale datasets. It has been recently shown
that SVD can be significantly scaled up, at a negligible cost
in performance, by randomization [16]. We will describe the
randomized SVD algorithm in the next section, in the context
of the OC-CF problem.

Randomized SVD has been applied to matrix factorization
[17] (but not in the OC-CF setting that we are considering).
The authors compute the rank-k randomized SVD of the ma-
trix R,

R ⇡ Pk⌃kQ
T
k

where, Pk 2 Rm⇥k, Qk 2 Rn⇥k and ⌃k 2 Rk⇥k. Given the
truncated SVD solution, they initialize the item latent factor
with the SVD solution and solve

argmin
A

��R�ATB
��2
F
+ � kAk2F (7)

s.t. B = ⌃
1
2
kQ

T
k

Similarly, if the matrix A is fixed instead of the matrix B, the
objective becomes

argmin
B

��R�ATB
��2
F
+ � kBk2F (8)

s.t. A = Pk⌃
1
2
k

We refer to (8) and (7) as U-MF-RSVD and I-MF-RSVD re-
spectively. As we will see in the results, the performance of
these two models can vary significantly.

3 Large Scale Linear Methods for One Class
Collaborative Filtering

Despite their superior performance, the applicability of Lin-
ear methods on real world large scale dataset are constrained

by their computational cost. Linear methods involve solving
a large number of regression subproblems on a huge design
matrix R making it extremely challenging on real world ap-
plications where the number of users and items is in millions.

Here we propose a model and an algorithm for scaling up
linear methods to large OC-CF problems. In particular, we
are seeking an approximation R ⇡ RW that attempts to cap-
ture most of the row space of the matrix R through a matrix
W that is low-rank and has small Frobenius norm. The moti-
vation for such a double regularization is to better control the
generalization error of the model, an insight that was proven
correct by our experiments. Moreover, it turns out that there
is a very natural and efficient way to compute such an approx-
imate decomposition of the matrix R by randomization [16],
which allows scaling to large problems.

Our model amounts to solving the following optimization
problem

argmin
rank(W)k

kR�RWk2F + � kWk2F (9)

where, typically, k ⌧ n. For � = 0, the optimal solution is
given by the Eckart-Young theorem (see, e.g., [16])

W = QkQ
T
k (10)

where Qk is an orthogonal matrix computed by a truncated
SVD

R ⇡ Pk⌃kQ
T
k

Similarly, if we drop the low-rank constraint in (9), the opti-
mal matrix W is given by the solution of a standard regres-
sion problem

W = (RTR+ �I)�1RTR (11)

which involves the inverse of the original matrix R and there-
fore does not scale to large problems.

However, under both a low-rank constraint and � > 0 in
(9), finding the optimal W involves solving a hard nonconvex
problem with no analytical solution in general. Nonetheless,
an analytical solution is possible for a certain parametrization
of W as we explain next. We first compute an approximate
orthogonal basis Qk of the row space of R, i.e.,

R ⇡ RQkQ
T
k (12)

using randomized SVD. The randomized SVD algorithm is
shown in Algorithm 1. (We refer to Halko et. al [16] for more
details.) Then we re-parametrize the matrix W as

W = QkY (13)

for some matrix Y. Note that through this parametrization
the rank of W is automatically controlled, no optimality is
lost when � = 0, and the optimization problem (9) reads

argmin
Y

kR�RQkYk2F + � kQkYk2F (14)

Since Qk is orthogonal, we have kQkYkF = kYkF ,
and (14) becomes

argmin
Y

kR�RQkYk2F + � kYk2F (15)

where �, µ > 0 are appropriate constants, and

C = {W 2 Rn⇥n : diag(W) = 0,W � 0}. (6)

Here, || · ||1 denotes the elementwise `1 norm of W so as
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details.) Then we re-parametrize the matrix W as
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for some matrix Y. Note that through this parametrization
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Since Qk is orthogonal, we have kQkYkF = kYkF ,
and (14) becomes
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where 

• In  general,  no  closed  form  solution,  gradient  based  optimization  is  inefficient.

• Without  rank  constraints:  least  squares  multi-­regression

• Without  norm  regularization  i.e. :  rank-­constrained  least  squares
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matrix S = W is learned from the data. In a related linear
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correct by our experiments. Moreover, it turns out that there
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plications where the number of users and items is in millions.

Here we propose a model and an algorithm for scaling up
linear methods to large OC-CF problems. In particular, we
are seeking an approximation R ⇡ RW that attempts to cap-
ture most of the row space of the matrix R through a matrix
W that is low-rank and has small Frobenius norm. The moti-
vation for such a double regularization is to better control the
generalization error of the model, an insight that was proven
correct by our experiments. Moreover, it turns out that there
is a very natural and efficient way to compute such an approx-
imate decomposition of the matrix R by randomization [16],
which allows scaling to large problems.

Our model amounts to solving the following optimization
problem

argmin
rank(W)k

kR�RWk2F + � kWk2F (9)

where, typically, k ⌧ n. For � = 0, the optimal solution is
given by the Eckart-Young theorem (see, e.g., [16])

W = QkQ
T
k (10)

where Qk is an orthogonal matrix computed by a truncated
SVD
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Similarly, if we drop the low-rank constraint in (9), the opti-
mal matrix W is given by the solution of a standard regres-
sion problem

W = (RTR+ �I)�1RTR (11)

which involves the inverse of the original matrix R and there-
fore does not scale to large problems.

However, under both a low-rank constraint and � > 0 in
(9), finding the optimal W involves solving a hard nonconvex
problem with no analytical solution in general. Nonetheless,
an analytical solution is possible for a certain parametrization
of W as we explain next. We first compute an approximate
orthogonal basis Qk of the row space of R, i.e.,

R ⇡ RQkQ
T
k (12)

using randomized SVD. The randomized SVD algorithm is
shown in Algorithm 1. (We refer to Halko et. al [16] for more
details.) Then we re-parametrize the matrix W as

W = QkY (13)

for some matrix Y. Note that through this parametrization
the rank of W is automatically controlled, no optimality is
lost when � = 0, and the optimization problem (9) reads

argmin
Y

kR�RQkYk2F + � kQkYk2F (14)

Since Qk is orthogonal, we have kQkYkF = kYkF ,
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where �, µ > 0 are appropriate constants, and

C = {W 2 Rn⇥n : diag(W) = 0,W � 0}. (6)

Here, || · ||1 denotes the elementwise `1 norm of W so as
to encourage sparsity, and the constraint diag(W) = 0 pre-
vents a trivial solution of W = In⇥n. SLIM is equivalent to
an item-based neighbourhood approach where the similarity
matrix S = W is learned from the data. In a related linear
model for OC-CF [13], the authors report very good perfor-
mance, but the proposed method is computationally expen-
sive, which restricts its applicability in real world problems.

Linear methods are attractive for several reasons. They
have superior performance, and unlike neighborhood meth-
ods, they adapt with the data as the parameters are learned
from data itself. Furthermore, the recommendations are eas-
ily interpretable. However, linear methods can be computa-
tionally expensive as they require solving a large number of
regression subproblems with a big design matrix R. This can
scale quadratically with the order of R, or worse.

2.4 Randomized SVD
SVD is the archetypal matrix factorization algorithm and has
been widely used in machine learning for dimensionality re-
duction. However, SVD is computationally expensive and not
scalable to large scale datasets. It has been recently shown
that SVD can be significantly scaled up, at a negligible cost
in performance, by randomization [16]. We will describe the
randomized SVD algorithm in the next section, in the context
of the OC-CF problem.

Randomized SVD has been applied to matrix factorization
[17] (but not in the OC-CF setting that we are considering).
The authors compute the rank-k randomized SVD of the ma-
trix R,

R ⇡ Pk⌃kQ
T
k

where, Pk 2 Rm⇥k, Qk 2 Rn⇥k and ⌃k 2 Rk⇥k. Given the
truncated SVD solution, they initialize the item latent factor
with the SVD solution and solve

argmin
A

��R�ATB
��2
F
+ � kAk2F (7)

s.t. B = ⌃
1
2
kQ

T
k

Similarly, if the matrix A is fixed instead of the matrix B, the
objective becomes

argmin
B

��R�ATB
��2
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+ � kBk2F (8)

s.t. A = Pk⌃
1
2
k
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Dataset Description and Evaluation

• Movielens 10M (ML10M)
• LASTFM
• Adobe Dataset

• PROPRIETARY-1
• PROPRIETARY-2

Evaluation Metrics
• precision@k, recall@k
• mean Average Precision@20

• 10 random train-test split
• 90%-10% split

• Error bars => 95% confidence interval

The latter can be solved analytically to give

Y = (QT
kR

TRQk + �I)�1QT
kR

TR

Note that this inversion involves a k ⇥ k matrix, and hence it
is tractable.

The choice of W = QkY is motivated by the following
observation. When � = 0, the solution to our problem is
W = QkQT

k . This is also the solution to the new formula-
tion of our problem for Y = QT

k . When � is close to zero,
we believe that sufficiently good solutions lie close to the span
of Qk. Therefore, we choose W = QkY. We demonstrate
that this choice performs well empirically in the experimental
section. Furthermore, Linear-Flow can be seen as an autoen-
coder collaborative filtering model [18] with linear activation
and Qk as input-hidden weights.

We refer to (14) as I-Linear-Flow as it corresponds to item-
item model. Similarly, we can define a user-user model, U-
Linear-Flow

argmin
Y

��R�YPT
kR

��2
F
+ � kYk2F (16)

As we discussed earlier, recommending similar items is
very prevalent in real-world recommender systems. In I-
Linear-Flow model, the item-item similarity is explicitly
given by the matrix W = QkY.

Algorithm 1 Given R 2 Rm⇥n, compute approximate rank-
k SVD; R ⇡ Pk⌃kQk

1: procedure RSVD(R, k)
2: Draw n⇥ k Gaussian random matrix ⌦
3: Construct n⇥ k sample matrix A = R⌦
4: Construct m⇥ k orthonormal matrix Z, such that A = ZX
5: Constuct k ⇥ n matrix B = ZTR
6: Compute the SVD of B, B = P̂k⌃kQk

7: R ) ZB ) ZP̂k⌃kQk ) Pk⌃kQk, where Pk = ZP̂k

8: return Pk⌃kQk

9: end procedure

4 Experiment and Evaluation
We now present an extensive set of experiments where we
compare the recommendation performance of the proposed
method and the all the baselines described under Section 2 on
several real-world datasets.

4.1 Datasets
For quantitative evaluation, we used two publicly available
datasets and two proprietary datasets. In all of our datasets,
we remove users with fewer that 3 corresponding items and
vice-versa. Table 3 summarizes statistics of the 4 datasets and
they are desscribed in details below.

ML10M The MovieLens 10M dataset2 is a standard
benchmark for collaborative filtering tasks. Following the
“Who Rated What” KDD Cup 2007 challenge [19], we cre-
ated a binarized version of the dataset suitable for evaluating
implicit feedback methods. From the original rating matrix

2
http://grouplens.org/datasets/movielens/

Table 3: Summary of datasets used in evaluation.

Dataset m n |Rui > 0|
ML10M 69,613 9,405 5,004,150
LASTFM 992 88,428 800,274
PROPRIETARY-1 26,928 14,399 120,268
PROPRIETARY-2 264,054 57,214 1,398,332

R̃ 2 {0, 1, . . . , 5}m⇥n, we created a binarized preference
matrix R with Rui = JR̃ui � 4K.

LASTFM The LastFM dataset3 [20] contains the play
counts of ⇠1000 users on ⇠170,000 artists. As per ML10M
we binarized the raw play counts.

PROPRIETARY-1 & PROPRIETARY-2 are real but
anonymized purchase datasets from two popular retail-
ers in the US. The data is provided by Company-X4, a
major provider of third party recommendation services.
PROPRIETARY-1 dataset consists of ⇠27,000 users,
⇠14,000 items and ⇠120,000 item purchases. Similarly,
PROPRIETARY-2 dataset consists of ⇠264,000 users,
⇠57,000 items and ⇠1 billion item purchases.

4.2 Evaluation Protocol
We split the datasets into random 90%-10% train-test set
and hold out 10% of the training set for hyperparamater
tuning. We report the mean test split performance, along
with standard errors corresponding to 95% confidence in-
tervals. To evaluate the performance of the various recom-
menders, we report precision@k and recall@k for k 2
{3, 5, 10, 20} (averaged over test users), and mean average
precision (mAP@20).

4.3 Methods compared
We compared the proposed method to a number of baselines:

• User- and item-based nearest neighbour (U-KNN and I-
KNN). For each dataset, we use Jaccard and Cosine sim-
ilarity metric and picked the best performing one.

• PureSVD of [21]. Instead of exact SVD, we use ran-
domized SVD for efficiency.

• Weighted matrix Factorization (WRMF) as defined in
Eq. (2).

• MF-RSVD of [17]. We ran this method with user
and item based initialization, U-MF-RSVD and I-MF-
RSVD, as discussed in Eq. (8) and (7) respectively.

• SLIM, as per Eq. (5). For computational convenience,
we used the SGDReg variant [22], which is identical
to SLIM except that the nonnegativity constraint is re-
moved. We did not evaluate SLIM with nonnegativity
directly as [22] reports superior performance to SLIM,
and is considerably faster to train.

We do not compare against LRec [13] due to its memory com-
plexity on a large dataset. For instance on the PROPRIETARY-
2 dataset, LRec requires ⇠260GB of memory.

3
http://ocelma.net/MusicRecommendationDataset/index.

html

4anonymised for the blind review and will be revealed later
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Baselines

Neighborhood
User KNN (U-KNN)
Item KNN (I-KNN)

Matrix Factorization
PureSVD
WRMF
MF-RSVD

U-MF-RSVD
I-MF-RSVD

SLIM
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Results

Table 4: Results on the PROPRIETARY-1 dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.0291 ± 0.0005 0.0186 ± 0.0002 0.0973 ± 0.0015 0.1232 ± 0.0021 0.0725 ± 0.0008
U-KNN 0.0386 ± 0.0005 0.0249 ± 0.0003 0.1321 ± 0.0037 0.1679 ± 0.0029 0.0969 ± 0.0033
PureSVD 0.0267 ± 0.0009 0.0160 ± 0.0005 0.0906 ± 0.0018 0.1073 ± 0.0026 0.0692 ± 0.0022
WRMF 0.0293 ± 0.0013 0.0183 ± 0.0008 0.0955 ± 0.0047 0.1186 ± 0.0045 0.0707 ± 0.0025
U-MF-RSVD 0.0381 ± 0.0004 0.0247 ± 0.0003 0.1301 ± 0.0017 0.1693 ± 0.0032 0.0961 ± 0.0026
I-MF-RSVD 0.0360 ± 0.0008 0.0234 ± 0.0004 0.1211 ± 0.0033 0.1550 ± 0.0038 0.0889 ± 0.0030
SLIM 0.0395 ± 0.0004 0.0258 ± 0.0004 0.1341 ± 0.0026 0.1729 ± 0.0039 0.0976 ± 0.0029
U-Linear-FLow 0.0391 ± 0.0005 0.0259 ± 0.0004 0.1350 ± 0.0032 0.1711 ± 0.0026 0.0970 ± 0.0030
I-Linear-FLow 0.0398 ± 0.0004 0.0262 ± 0.0003 0.1362 ± 0.0026 0.1758 ± 0.0026 0.0971 ± 0.0028

Table 5: Results on the PROPRIETARY-2 dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.0641 ± 0.0002 0.0400 ± 2.4970⇥ 10�5 0.2097 ± 0.0007 0.2566 ± 0.0007 0.1591 ± 0.0007
U-KNN 0.0605 ± 0.0003 0.0365 ± 0.0002 0.2029 ± 0.0013 0.2407 ± 0.0013 0.1532 ± 0.0007
WRMF 0.0437 ± 0.0004 0.0283 ± 0.0001 0.1417 ± 0.0015 0.1801 ± 0.0012 0.1053 ± 0.0011
PureSVD 0.0244 ± 0.0002 0.0153 ± 0.0002 0.0823 ± 0.0005 0.1018 ± 0.0009 0.0624 ± 0.0004
U-MF-RSVD 0.0502 ± 0.0002 0.0305 ± 6.9209⇥ 10�5 0.1660 ± 0.0008 0.1985 ± 0.0005 0.1277 ± 0.0006
I-MF-RSVD 0.0652 ± 0.0001 0.0408 ± 6.5965⇥ 10�5 0.2199 ± 0.0008 0.2685 ± 0.0010 0.1582 ± 0.0005

SLIM 0.0671 ± 0.0003 0.0433 ± 9.5600 ⇥ 10�5 0.2213 ± 0.0013 0.2790 ± 0.0012 0.1654 ± 0.0006
U-Linear-FLow 0.0666 ± 0.0002 0.0430 ± 8.6598⇥ 10�5 0.2214 ± 0.0010 0.2739 ± 0.0013 0.1611 ± 0.0008
I-Linear-FLow 0.0656 ± 0.0002 0.0429 ± 8.6598⇥ 10�5 0.2202 ± 0.0012 0.2719 ± 0.0010 0.1598 ± 0.0006

Table 6: Results on the LASTFM dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.5600 ± 0.0067 0.5068 ± 0.0053 0.0284 ± 0.0002 0.0497 ± 0.0007 0.3280 ± 0.0055
U-KNN 0.5127 ± 0.0038 0.4619 ± 0.0044 0.0260 ± 0.0011 0.0448 ± 0.0011 0.2894 ± 0.0029
WRMF 0.5899 ± 0.0049 0.5308 ± 0.0049 0.0300 ± 0.0009 0.0516 ± 0.0015 0.3562 ± 0.0036
PureSVD 0.3690 ± 0.0082 0.3321 ± 0.0069 0.0194 ± 0.0004 0.0338 ± 0.0006 0.1723 ± 0.0065
U-MF-RSVD 0.4865 ± 0.0068 0.4423 ± 0.0028 0.0217 ± 0.0008 0.0387 ± 0.0005 0.2810 ± 0.0023
I-MF-RSVD 0.5447 ± 0.0050 0.4901 ± 0.0011 0.0292 ± 0.0006 0.0496 ± 0.0011 0.3146 ± 0.0020
SLIM 0.6002 ± 0.0055 0.5384 ± 0.0048 0.0346 ± 0.0004 0.0592 ± 0.0007 0.3587 ± 0.0065
U-Linear-FLow 0.5912 ± 0.0067 0.5337 ± 0.0027 0.0315 ± 0.0014 0.0540 ± 0.0004 0.3563 ± 0.0025
I-Linear-FLow 0.5913 ± 0.0046 0.5337 ± 0.0021 0.0310 ± 0.0010 0.0529 ± 0.0006 0.3615 ± 0.0014

Table 7: Results on the ML10M dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.1506 ± 0.0009 0.1179 ± 0.0006 0.1393 ± 0.0009 0.2121 ± 0.0012 0.1216 ± 0.0003
U-KNN Out of Memory
WRMF 0.1561 ± 0.0006 0.1205 ± 0.0002 0.1428 ± 0.0008 0.2139 ± 0.0009 0.1255 ± 0.0003
PureSVD 0.1054 ± 0.0006 0.0836 ± 0.0005 0.1030 ± 0.0011 0.1572 ± 0.0009 0.0836 ± 0.0010
U-MF-RSVD 0.1895 ± 0.0007 0.1456 ± 0.0008 0.1755 ± 0.0005 0.2592 ± 0.0014 0.1586 ± 0.0005
I-MF-RSVD 0.1902 ± 0.0010 0.1461 ± 0.0005 0.1745 ± 0.0010 0.2602 ± 0.0008 0.1590 ± 0.0007
SLIM 0.1888 ± 0.0011 0.1464 ± 0.0004 0.1748 ± 0.0012 0.2611 ± 0.0009 0.1579 ± 0.0007
U-Linear-FLow 0.1927 ± 0.0009 0.1477 ± 0.0006 0.1777 ± 0.0008 0.2624 ± 0.0013 0.1601 ± 0.0006
I-Linear-FLow 0.1909 ± 0.0010 0.1468 ± 0.0005 0.1765 ± 0.0010 0.2609 ± 0.0008 0.1592 ± 0.0007
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I-MF-RSVD 0.0652 ± 0.0001 0.0408 ± 6.5965⇥ 10�5 0.2199 ± 0.0008 0.2685 ± 0.0010 0.1582 ± 0.0005

SLIM 0.0671 ± 0.0003 0.0433 ± 9.5600 ⇥ 10�5 0.2213 ± 0.0013 0.2790 ± 0.0012 0.1654 ± 0.0006
U-Linear-FLow 0.0666 ± 0.0002 0.0430 ± 8.6598⇥ 10�5 0.2214 ± 0.0010 0.2739 ± 0.0013 0.1611 ± 0.0008
I-Linear-FLow 0.0656 ± 0.0002 0.0429 ± 8.6598⇥ 10�5 0.2202 ± 0.0012 0.2719 ± 0.0010 0.1598 ± 0.0006

Table 6: Results on the LASTFM dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.5600 ± 0.0067 0.5068 ± 0.0053 0.0284 ± 0.0002 0.0497 ± 0.0007 0.3280 ± 0.0055
U-KNN 0.5127 ± 0.0038 0.4619 ± 0.0044 0.0260 ± 0.0011 0.0448 ± 0.0011 0.2894 ± 0.0029
WRMF 0.5899 ± 0.0049 0.5308 ± 0.0049 0.0300 ± 0.0009 0.0516 ± 0.0015 0.3562 ± 0.0036
PureSVD 0.3690 ± 0.0082 0.3321 ± 0.0069 0.0194 ± 0.0004 0.0338 ± 0.0006 0.1723 ± 0.0065
U-MF-RSVD 0.4865 ± 0.0068 0.4423 ± 0.0028 0.0217 ± 0.0008 0.0387 ± 0.0005 0.2810 ± 0.0023
I-MF-RSVD 0.5447 ± 0.0050 0.4901 ± 0.0011 0.0292 ± 0.0006 0.0496 ± 0.0011 0.3146 ± 0.0020
SLIM 0.6002 ± 0.0055 0.5384 ± 0.0048 0.0346 ± 0.0004 0.0592 ± 0.0007 0.3587 ± 0.0065
U-Linear-FLow 0.5912 ± 0.0067 0.5337 ± 0.0027 0.0315 ± 0.0014 0.0540 ± 0.0004 0.3563 ± 0.0025
I-Linear-FLow 0.5913 ± 0.0046 0.5337 ± 0.0021 0.0310 ± 0.0010 0.0529 ± 0.0006 0.3615 ± 0.0014

Table 7: Results on the ML10M dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.1506 ± 0.0009 0.1179 ± 0.0006 0.1393 ± 0.0009 0.2121 ± 0.0012 0.1216 ± 0.0003
U-KNN Out of Memory
WRMF 0.1561 ± 0.0006 0.1205 ± 0.0002 0.1428 ± 0.0008 0.2139 ± 0.0009 0.1255 ± 0.0003
PureSVD 0.1054 ± 0.0006 0.0836 ± 0.0005 0.1030 ± 0.0011 0.1572 ± 0.0009 0.0836 ± 0.0010
U-MF-RSVD 0.1895 ± 0.0007 0.1456 ± 0.0008 0.1755 ± 0.0005 0.2592 ± 0.0014 0.1586 ± 0.0005
I-MF-RSVD 0.1902 ± 0.0010 0.1461 ± 0.0005 0.1745 ± 0.0010 0.2602 ± 0.0008 0.1590 ± 0.0007
SLIM 0.1888 ± 0.0011 0.1464 ± 0.0004 0.1748 ± 0.0012 0.2611 ± 0.0009 0.1579 ± 0.0007
U-Linear-FLow 0.1927 ± 0.0009 0.1477 ± 0.0006 0.1777 ± 0.0008 0.2624 ± 0.0013 0.1601 ± 0.0006
I-Linear-FLow 0.1909 ± 0.0010 0.1468 ± 0.0005 0.1765 ± 0.0010 0.2609 ± 0.0008 0.1592 ± 0.0007
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Results

Table 4: Results on the PROPRIETARY-1 dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.0291 ± 0.0005 0.0186 ± 0.0002 0.0973 ± 0.0015 0.1232 ± 0.0021 0.0725 ± 0.0008
U-KNN 0.0386 ± 0.0005 0.0249 ± 0.0003 0.1321 ± 0.0037 0.1679 ± 0.0029 0.0969 ± 0.0033
PureSVD 0.0267 ± 0.0009 0.0160 ± 0.0005 0.0906 ± 0.0018 0.1073 ± 0.0026 0.0692 ± 0.0022
WRMF 0.0293 ± 0.0013 0.0183 ± 0.0008 0.0955 ± 0.0047 0.1186 ± 0.0045 0.0707 ± 0.0025
U-MF-RSVD 0.0381 ± 0.0004 0.0247 ± 0.0003 0.1301 ± 0.0017 0.1693 ± 0.0032 0.0961 ± 0.0026
I-MF-RSVD 0.0360 ± 0.0008 0.0234 ± 0.0004 0.1211 ± 0.0033 0.1550 ± 0.0038 0.0889 ± 0.0030
SLIM 0.0395 ± 0.0004 0.0258 ± 0.0004 0.1341 ± 0.0026 0.1729 ± 0.0039 0.0976 ± 0.0029
U-Linear-FLow 0.0391 ± 0.0005 0.0259 ± 0.0004 0.1350 ± 0.0032 0.1711 ± 0.0026 0.0970 ± 0.0030
I-Linear-FLow 0.0398 ± 0.0004 0.0262 ± 0.0003 0.1362 ± 0.0026 0.1758 ± 0.0026 0.0971 ± 0.0028

Table 5: Results on the PROPRIETARY-2 dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.0641 ± 0.0002 0.0400 ± 2.4970⇥ 10�5 0.2097 ± 0.0007 0.2566 ± 0.0007 0.1591 ± 0.0007
U-KNN 0.0605 ± 0.0003 0.0365 ± 0.0002 0.2029 ± 0.0013 0.2407 ± 0.0013 0.1532 ± 0.0007
WRMF 0.0437 ± 0.0004 0.0283 ± 0.0001 0.1417 ± 0.0015 0.1801 ± 0.0012 0.1053 ± 0.0011
PureSVD 0.0244 ± 0.0002 0.0153 ± 0.0002 0.0823 ± 0.0005 0.1018 ± 0.0009 0.0624 ± 0.0004
U-MF-RSVD 0.0502 ± 0.0002 0.0305 ± 6.9209⇥ 10�5 0.1660 ± 0.0008 0.1985 ± 0.0005 0.1277 ± 0.0006
I-MF-RSVD 0.0652 ± 0.0001 0.0408 ± 6.5965⇥ 10�5 0.2199 ± 0.0008 0.2685 ± 0.0010 0.1582 ± 0.0005

SLIM 0.0671 ± 0.0003 0.0433 ± 9.5600 ⇥ 10�5 0.2213 ± 0.0013 0.2790 ± 0.0012 0.1654 ± 0.0006
U-Linear-FLow 0.0666 ± 0.0002 0.0430 ± 8.6598⇥ 10�5 0.2214 ± 0.0010 0.2739 ± 0.0013 0.1611 ± 0.0008
I-Linear-FLow 0.0656 ± 0.0002 0.0429 ± 8.6598⇥ 10�5 0.2202 ± 0.0012 0.2719 ± 0.0010 0.1598 ± 0.0006

Table 6: Results on the LASTFM dataset. Reported numbers are the mean and standard errors across test folds.
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I-KNN 0.5600 ± 0.0067 0.5068 ± 0.0053 0.0284 ± 0.0002 0.0497 ± 0.0007 0.3280 ± 0.0055
U-KNN 0.5127 ± 0.0038 0.4619 ± 0.0044 0.0260 ± 0.0011 0.0448 ± 0.0011 0.2894 ± 0.0029
WRMF 0.5899 ± 0.0049 0.5308 ± 0.0049 0.0300 ± 0.0009 0.0516 ± 0.0015 0.3562 ± 0.0036
PureSVD 0.3690 ± 0.0082 0.3321 ± 0.0069 0.0194 ± 0.0004 0.0338 ± 0.0006 0.1723 ± 0.0065
U-MF-RSVD 0.4865 ± 0.0068 0.4423 ± 0.0028 0.0217 ± 0.0008 0.0387 ± 0.0005 0.2810 ± 0.0023
I-MF-RSVD 0.5447 ± 0.0050 0.4901 ± 0.0011 0.0292 ± 0.0006 0.0496 ± 0.0011 0.3146 ± 0.0020
SLIM 0.6002 ± 0.0055 0.5384 ± 0.0048 0.0346 ± 0.0004 0.0592 ± 0.0007 0.3587 ± 0.0065
U-Linear-FLow 0.5912 ± 0.0067 0.5337 ± 0.0027 0.0315 ± 0.0014 0.0540 ± 0.0004 0.3563 ± 0.0025
I-Linear-FLow 0.5913 ± 0.0046 0.5337 ± 0.0021 0.0310 ± 0.0010 0.0529 ± 0.0006 0.3615 ± 0.0014

Table 7: Results on the ML10M dataset. Reported numbers are the mean and standard errors across test folds.

prec@5 prec@10 recall@5 recall@10 mAP@20
I-KNN 0.1506 ± 0.0009 0.1179 ± 0.0006 0.1393 ± 0.0009 0.2121 ± 0.0012 0.1216 ± 0.0003
U-KNN Out of Memory
WRMF 0.1561 ± 0.0006 0.1205 ± 0.0002 0.1428 ± 0.0008 0.2139 ± 0.0009 0.1255 ± 0.0003
PureSVD 0.1054 ± 0.0006 0.0836 ± 0.0005 0.1030 ± 0.0011 0.1572 ± 0.0009 0.0836 ± 0.0010
U-MF-RSVD 0.1895 ± 0.0007 0.1456 ± 0.0008 0.1755 ± 0.0005 0.2592 ± 0.0014 0.1586 ± 0.0005
I-MF-RSVD 0.1902 ± 0.0010 0.1461 ± 0.0005 0.1745 ± 0.0010 0.2602 ± 0.0008 0.1590 ± 0.0007
SLIM 0.1888 ± 0.0011 0.1464 ± 0.0004 0.1748 ± 0.0012 0.2611 ± 0.0009 0.1579 ± 0.0007
U-Linear-FLow 0.1927 ± 0.0009 0.1477 ± 0.0006 0.1777 ± 0.0008 0.2624 ± 0.0013 0.1601 ± 0.0006
I-Linear-FLow 0.1909 ± 0.0010 0.1468 ± 0.0005 0.1765 ± 0.0010 0.2609 ± 0.0008 0.1592 ± 0.0007
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recommendation quality is not consistent and lagging behind the other methods. Further, factorisation
approaches that use randomised SVD have similar computational footprints as LINEAR-FLOW while
WRMF is much more computationally expensive.

Table 5.15: Training times of various methods on PROPRIETARY-2 and ML10M Dataset.

PROPRIETARY-2 ML1M
I-KNN 2.5 sec 10.7 sec
U-KNN 46.9 sec -
PURESVD 3 min 1 min 27 sec
WRMF 27 min 3 sec 12 min 38 sec
U-MF-SVD 3 min 10 sec 1 min 38 sec
I-MF-SVD 3 min 8 sec 1 min 39 sec
I-SLIM 32 min 37 sec 7 min 40 sec
U-LINEAR-FLOW 3 min 27 sec 1 min 44 sec
I-LINEAR-FLOW 3 min 32 sec 1 min 42 sec

Qualatitive analysis of learned similarities

In this Section, we provide a qualitative evaluation of the similarities, in particular item-item, learned
by our I-LINEAR-FLOW model. We use PROPRIETARY-3 , a dataset from a major stock image market
site13. The data provides whether a given user has clicked on a particular image category, and from these
our model can infer the similarity measure between the image categories. We choose this dataset for the
qualitative evaluation mainly because the category names are much easier to interpret compared to the
other datasets.

In Table 5.16, we show some examples14 of top-5 similar items learned by I-LINEAR-FLOW model.
We observe that the model discovers meaningful and explainable similarities, hence making it applicable
in similar item recommendations.

Table 5.16: Top-5 similar items learned by I-LINEAR-FLOW model.

Item Chemistry Chilling out Workers Unemployment Divorce and Conflict Museums

Similar items

Test and Analysis Beach Holidays Construction Job Search Depression Painting
Drug and Pills Tourism Teamwork Tax and Accounting Getting upset Statues
Health Care Relaxing Manufacturing Breaking the law Crying Artistic monuments
Scientists Hiking Service industry Money Loneliness Paris
Medical Equipments Consumer service Beaches Workers Rage Italy

Item Dance Vinegar Pearls Graduation Aging Homelessness

Similar items

Exercise Olive Oil Wealth High School Patients Depression
Running And Jumping Spice Wedding School Grand Parenting Loneliness
Disco And Clubs Salads Accessories Exams Disability Crying
Circus And Performing Garlic Gold Job Search Health Care Getting Upset
Gymnastics other Make Up E-Learning Doctors Risk And Danger

5.8 Conclusion

In this Chapter, we formulated LREC, a user-focused linear model for OC-CF. We demonstrated the
superior performance of LREC over the state-of-the-art baselines. Despite being embarrassingly paral-
lel, LREC, like other linear models, suffers from computational and space limitations. To address the
limitations we formulated LINEAR-FLOW, a fast low-dimensional regularised linear model, which lev-
earges randomised SVD algorithm. We showed that LINEAR-FLOW is computationally superior to the
state-of-the-art models and yields competitive performance.

13The dataset sharing agreement with the provider restricts us from reporting the statistics and quantitative results. Hence, we do not report
summary statistics and quantitative results on this dataset

14Visit http://ssedhain.com/demos/Item-Item.html for interactive visualization
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Learned Similarities

The latter can be solved analytically to give

Y = (QT
kR

TRQk + �I)�1QT
kR

TR

Note that this inversion involves a k ⇥ k matrix, and hence it
is tractable.

The choice of W = QkY is motivated by the following
observation. When � = 0, the solution to our problem is
W = QkQT

k . This is also the solution to the new formula-
tion of our problem for Y = QT

k . When � is close to zero,
we believe that sufficiently good solutions lie close to the span
of Qk. Therefore, we choose W = QkY. We demonstrate
that this choice performs well empirically in the experimental
section. Furthermore, Linear-Flow can be seen as an autoen-
coder collaborative filtering model [18] with linear activation
and Qk as input-hidden weights.

We refer to (14) as I-Linear-Flow as it corresponds to item-
item model. Similarly, we can define a user-user model, U-
Linear-Flow

argmin
Y

��R�YPT
kR

��2
F
+ � kYk2F (16)

As we discussed earlier, recommending similar items is
very prevalent in real-world recommender systems. In I-
Linear-Flow model, the item-item similarity is explicitly
given by the matrix W = QkY.

Algorithm 1 Given R 2 Rm⇥n, compute approximate rank-
k SVD; R ⇡ Pk⌃kQk

1: procedure RSVD(R, k)
2: Draw n⇥ k Gaussian random matrix ⌦
3: Construct n⇥ k sample matrix A = R⌦
4: Construct m⇥ k orthonormal matrix Z, such that A = ZX
5: Constuct k ⇥ n matrix B = ZTR
6: Compute the SVD of B, B = P̂k⌃kQk

7: R ) ZB ) ZP̂k⌃kQk ) Pk⌃kQk, where Pk = ZP̂k

8: return Pk⌃kQk

9: end procedure

4 Experiment and Evaluation
We now present an extensive set of experiments where we
compare the recommendation performance of the proposed
method and the all the baselines described under Section 2 on
several real-world datasets.

4.1 Datasets
For quantitative evaluation, we used two publicly available
datasets and two proprietary datasets. In all of our datasets,
we remove users with fewer that 3 corresponding items and
vice-versa. Table 3 summarizes statistics of the 4 datasets and
they are desscribed in details below.

ML10M The MovieLens 10M dataset2 is a standard
benchmark for collaborative filtering tasks. Following the
“Who Rated What” KDD Cup 2007 challenge [19], we cre-
ated a binarized version of the dataset suitable for evaluating
implicit feedback methods. From the original rating matrix

2
http://grouplens.org/datasets/movielens/

Table 3: Summary of datasets used in evaluation.

Dataset m n |Rui > 0|
ML10M 69,613 9,405 5,004,150
LASTFM 992 88,428 800,274
PROPRIETARY-1 26,928 14,399 120,268
PROPRIETARY-2 264,054 57,214 1,398,332

R̃ 2 {0, 1, . . . , 5}m⇥n, we created a binarized preference
matrix R with Rui = JR̃ui � 4K.

LASTFM The LastFM dataset3 [20] contains the play
counts of ⇠1000 users on ⇠170,000 artists. As per ML10M
we binarized the raw play counts.

PROPRIETARY-1 & PROPRIETARY-2 are real but
anonymized purchase datasets from two popular retail-
ers in the US. The data is provided by Company-X4, a
major provider of third party recommendation services.
PROPRIETARY-1 dataset consists of ⇠27,000 users,
⇠14,000 items and ⇠120,000 item purchases. Similarly,
PROPRIETARY-2 dataset consists of ⇠264,000 users,
⇠57,000 items and ⇠1 billion item purchases.

4.2 Evaluation Protocol
We split the datasets into random 90%-10% train-test set
and hold out 10% of the training set for hyperparamater
tuning. We report the mean test split performance, along
with standard errors corresponding to 95% confidence in-
tervals. To evaluate the performance of the various recom-
menders, we report precision@k and recall@k for k 2
{3, 5, 10, 20} (averaged over test users), and mean average
precision (mAP@20).

4.3 Methods compared
We compared the proposed method to a number of baselines:

• User- and item-based nearest neighbour (U-KNN and I-
KNN). For each dataset, we use Jaccard and Cosine sim-
ilarity metric and picked the best performing one.

• PureSVD of [21]. Instead of exact SVD, we use ran-
domized SVD for efficiency.

• Weighted matrix Factorization (WRMF) as defined in
Eq. (2).

• MF-RSVD of [17]. We ran this method with user
and item based initialization, U-MF-RSVD and I-MF-
RSVD, as discussed in Eq. (8) and (7) respectively.

• SLIM, as per Eq. (5). For computational convenience,
we used the SGDReg variant [22], which is identical
to SLIM except that the nonnegativity constraint is re-
moved. We did not evaluate SLIM with nonnegativity
directly as [22] reports superior performance to SLIM,
and is considerably faster to train.

We do not compare against LRec [13] due to its memory com-
plexity on a large dataset. For instance on the PROPRIETARY-
2 dataset, LRec requires ⇠260GB of memory.

3
http://ocelma.net/MusicRecommendationDataset/index.

html

4anonymised for the blind review and will be revealed later

Item-Item Similarity
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Implicit Feedback

Weighted Matrix Factorization

Neighborhood methods

Do not learn similarity matrix

SLIM (Sparse Linear Method) [state-of-the-art]

Learns similarity matrix

But, inefficient.

Linear-Flow

Learns a low-rank similarity matrix

Utilize Randomized SVD for efficiency

Comparable to state-of-the-art (SLIM)

Order of magnitude faster

Future direction: handle side information
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Recommender	
  Systems

Recommender	
  systems	
  help	
  find	
  relevant	
  items	
  that	
  
match	
  the	
  user’s	
  interest	
  from	
  the	
  large	
  amounts	
  of	
  
user	
  interaction	
  data.

Many	
  applications	
  – news,	
  movies,	
  songs,	
  product	
  
recommendation.

Most	
  of	
  these	
  systems	
  require	
  re-­‐training	
  when	
  after	
  
new	
  ratings/feedbacks	
  arrive	
  and	
  suffer	
  from	
  cold	
  
start.
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Exploration	
  Exploitation	
  for	
  Matrix	
  Factorization

Exploration	
  Exploitation	
  for	
  cold	
  start	
  problems
When	
  little	
  data	
  (evidence)	
  is	
  at	
  hand,	
  the	
  system’s	
  belief	
  about	
  
what	
  is	
  an	
  optimal	
  recommendation	
  is	
  uncertain.
There	
  is	
  a	
  trade	
  of	
  between:

Exploit:	
  Recommend	
  (what	
  the	
  system	
  thinks	
  is)	
  the	
  optimal	
  item	
  
given	
  the	
  evidence
Explore:	
  Recommend	
  less-­‐known	
  items.

Online	
  Matrix	
  Factorization
How	
  to	
  efficiently,	
  incrementally	
  maintain	
  the	
  system’s	
  uncertainty	
  
about	
  its	
  (matrix-­‐factorization)	
  model	
  over	
  time?

27



Recommendation	
  as	
  Online	
  Learning	
  +	
  Sequential	
  
Decision	
  Making

At	
  time	
  t
Input:	
  user
Action:	
  recommend	
  item
Reward:	
  

(distributed	
  according	
  to	
  some	
  unknown	
  distribution)

Goal
Maximize	
  accumulated	
  rewards
Equivalently:	
  minimize	
  cumulative	
  regrets

In	
  hindsight,	
  the	
  regret	
  of	
  not	
  having	
  the	
  best	
  action	
  at	
  time	
  t	
  is

28
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Multi-­‐Arm	
  Bandit

At	
  time	
  t
Input:	
  none
Action:	
  play/recommend	
  arm
Reward:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

independent	
  Bernoulli,	
  unknown

How	
  to	
  decide	
  which	
  arm	
  to	
  play?
Epsilon-­‐greedy
Upper	
  confidence	
  bound
Thompson	
  sampling

29
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Multi-­‐Arm	
  Bandit

Thompson	
  Sampling
Assume	
  some	
  prior
At	
  time	
  t,	
  randomly	
  recommend	
  arm	
  	
  	
  	
  	
  	
  with	
  probability	
  equals	
  to	
  
the	
  probability	
  that	
  	
  	
  	
  	
  	
  	
  is	
  the	
  best	
  arm	
  given	
  all	
  information	
  up	
  to	
  t
Equivalently:	
  

Sample	
  for	
  all	
  j
Recommend	
  arm	
  	
  

Simple	
  (non-­‐deterministic)	
  policy,	
  regret	
  bound	
  harder	
  to	
  prove,	
  
but	
  works	
  well	
  in	
  practice.

30

jt
jt

Pj ⇠ ⇧

Pj ⇠ ⇧(.|O1:t�1)
ˆj = maxj E[rj |Pj ]



Matrix	
  Factorization	
  Bandit

At	
  time	
  t
Input:	
  user
Action:	
  recommend	
  item
Reward:	
  

Assume	
  a	
  probabilistic	
  matrix	
  factorization	
  (PMF)	
  	
  
(Salakhutdinov &	
  Mnih 2007)	
  prior	
  for	
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parameter governing reward structure, and O1:t the history of observations currently available to the
agent. The agent chooses a⇤

= a with probability
Z

I
h
E [r|a, ✓] = max

a

0
E [r|a0, ✓]

i
P (✓|O1:t)d✓

which can be implemented by simply sampling ✓ from the posterior P (✓|O1:t) and let a⇤
=

argmax

a

0 E [r|a0, ✓]. However for many realistic scenarios (including for matrix completion), sam-
pling from P (✓|O1:t) is not computationally efficient and thus recourse to approximate methods is
required to make TS practical.

We propose a computationally-efficient algorithm for solving our problem, which we call Particle

Thompson sampling for matrix factorization (PTS). PTS is a combination of particle filtering for
online Bayesian parameter estimation and TS in the non-conjugate case when the posterior does
not have a closed form. Particle filtering uses a set of weighted samples (particles) to estimate
the posterior density. In order to overcome the problem of the huge parameter space, we utilize
Rao-Blackwellization and design a suitable Monte Carlo kernel to come up with a computationally
and statistically efficient way to update the set of particles as new data arrives in an online fashion.
Unlike the prior work [2] which approximates the posterior of the latent item features by a single
point estimate, our approach can maintain a much better approximation of the posterior of the latent
features by a diverse set of particles. Our results on five different real datasets show a substantial
improvement in the cumulative regret vis-a-vis other online methods.

2 Probabilistic Matrix Factorization
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V
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U
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R
ij

Figure 1: Graphical model of
probabilistic matrix factoriza-
tion model

We first review the probabilistic matrix factorization approach to
the low-rank matrix completion problem. In matrix completion, a
portion Ro of the N ⇥ M matrix R = (r

ij

) is observed, and the
goal is to infer the unobserved entries of R. In probabilistic matrix
factorization (PMF) [5], R is assumed to be a noisy perturbation of
a rank-K matrix ¯R = UV > where U

N⇥K

and V
M⇥K

are termed
the user and item latent features (K is typically small). The full
generative model of PMF is

U
i

i.i.d. ⇠ N (0, �2
u

I
K

)

V
j

i.i.d. ⇠ N (0, �2
v

I
K

)

r
ij

|U, V i.i.d. ⇠ N (U>
i

V
j

, �2
)

(1)

where the variances (�2, �2
U

, �2
V

) are the parameters of the model.
We also consider a full Bayesian treatment where the variances
�2

U

and �2
V

are drawn from an inverse Gamma prior (while �2

is held fixed), i.e., �
U

= ��2
U

⇠ �(↵, �); �
V

= ��2
V

⇠ �(↵, �) (this is a special case of the
Bayesian PMF [6] where we only consider isotropic Gaussians)1. Given this generative model,
from the observed ratings Ro, we would like to estimate the parameters U and V which will al-
low us to “complete” the matrix R. PMF is a MAP point-estimate which finds U, V to maximize
Pr(U, V |Ro, �, �

U

, �
V

) via (stochastic) gradient ascend (alternate least square can also be used [1]).
Bayesian PMF [6] attempts to approximate the full posterior Pr(U, V |Ro, �, ↵, �). The joint pos-
terior of U and V are intractable; however, the structure of the graphical model (Fig. 1) can be
exploited to derive an efficient Gibbs sampler.

We now provide the expressions for the conditional probabilities of interest. Supposed that V and
�

U

are known. Then the vectors U
i

are independent for each user i. Let rts(i) = {j|r
ij

2 Ro} be
the set of items rated by user i, observe that the ratings {Ro

ij

|j 2 rts(i)} are generated i.i.d. from U
i

following a simple conditional linear Gaussian model. Thus, the posterior of U
i

has the closed form

Pr(U
i

|V, Ro, �, �
U

) = Pr(U
i

|V
rts(i), R

o

i,rts(i), �U

, �) = N (U
i

|µu

i

, (⇤u

i

)

�1
) (2)

where µu

i

=

1

�2
(⇤

u

i

)

�1⇣u

i

; ⇤

u

i

=

1

�2

X

j2rts(i)

V
j

V >
j

+

1

�2
u

I
K

; ⇣u

i

=

X

j2rts(i)

ro

ij

V
j

. (3)

1[6] considers the full covariance structure, but they also noted that isotropic Gaussians are effective enough.
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Matrix	
  Factorization	
  Bandit

At	
  time	
  t
Input:	
  user
Action:	
  recommend	
  item
Reward:	
  

Assume	
  a	
  probabilistic	
  matrix	
  factorization	
  (PMF	
  -­‐ Salakhutdinov &	
  
Mnih 2007)	
  prior	
  for	
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parameter governing reward structure, and O1:t the history of observations currently available to the
agent. The agent chooses a⇤

= a with probability
Z

I
h
E [r|a, ✓] = max

a

0
E [r|a0, ✓]

i
P (✓|O1:t)d✓

which can be implemented by simply sampling ✓ from the posterior P (✓|O1:t) and let a⇤
=

argmax

a

0 E [r|a0, ✓]. However for many realistic scenarios (including for matrix completion), sam-
pling from P (✓|O1:t) is not computationally efficient and thus recourse to approximate methods is
required to make TS practical.

We propose a computationally-efficient algorithm for solving our problem, which we call Particle

Thompson sampling for matrix factorization (PTS). PTS is a combination of particle filtering for
online Bayesian parameter estimation and TS in the non-conjugate case when the posterior does
not have a closed form. Particle filtering uses a set of weighted samples (particles) to estimate
the posterior density. In order to overcome the problem of the huge parameter space, we utilize
Rao-Blackwellization and design a suitable Monte Carlo kernel to come up with a computationally
and statistically efficient way to update the set of particles as new data arrives in an online fashion.
Unlike the prior work [2] which approximates the posterior of the latent item features by a single
point estimate, our approach can maintain a much better approximation of the posterior of the latent
features by a diverse set of particles. Our results on five different real datasets show a substantial
improvement in the cumulative regret vis-a-vis other online methods.

2 Probabilistic Matrix Factorization
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Figure 1: Graphical model of
probabilistic matrix factoriza-
tion model

We first review the probabilistic matrix factorization approach to
the low-rank matrix completion problem. In matrix completion, a
portion Ro of the N ⇥ M matrix R = (r

ij

) is observed, and the
goal is to infer the unobserved entries of R. In probabilistic matrix
factorization (PMF) [5], R is assumed to be a noisy perturbation of
a rank-K matrix ¯R = UV > where U

N⇥K

and V
M⇥K

are termed
the user and item latent features (K is typically small). The full
generative model of PMF is

U
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i.i.d. ⇠ N (0, �2
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I
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)

V
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i.i.d. ⇠ N (0, �2
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|U, V i.i.d. ⇠ N (U>
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V
j
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(1)

where the variances (�2, �2
U

, �2
V

) are the parameters of the model.
We also consider a full Bayesian treatment where the variances
�2

U

and �2
V

are drawn from an inverse Gamma prior (while �2

is held fixed), i.e., �
U

= ��2
U

⇠ �(↵, �); �
V

= ��2
V

⇠ �(↵, �) (this is a special case of the
Bayesian PMF [6] where we only consider isotropic Gaussians)1. Given this generative model,
from the observed ratings Ro, we would like to estimate the parameters U and V which will al-
low us to “complete” the matrix R. PMF is a MAP point-estimate which finds U, V to maximize
Pr(U, V |Ro, �, �

U

, �
V

) via (stochastic) gradient ascend (alternate least square can also be used [1]).
Bayesian PMF [6] attempts to approximate the full posterior Pr(U, V |Ro, �, ↵, �). The joint pos-
terior of U and V are intractable; however, the structure of the graphical model (Fig. 1) can be
exploited to derive an efficient Gibbs sampler.

We now provide the expressions for the conditional probabilities of interest. Supposed that V and
�

U

are known. Then the vectors U
i

are independent for each user i. Let rts(i) = {j|r
ij

2 Ro} be
the set of items rated by user i, observe that the ratings {Ro

ij

|j 2 rts(i)} are generated i.i.d. from U
i

following a simple conditional linear Gaussian model. Thus, the posterior of U
i

has the closed form
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1[6] considers the full covariance structure, but they also noted that isotropic Gaussians are effective enough.
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Particle	
  Thompson	
  Sampling	
  (PTS)	
  for	
  Matrix	
  Factorization	
  Bandit
(Kawale,	
  Bui,	
  et	
  al	
  NIPS	
  2015)

Posterior	
  at	
  time	
  t

Input:	
  user
Sample
Recommend
Main	
  difficulty

How	
  to	
  keep	
  and	
  update	
  the	
  posterior	
  	
  	
  	
  	
  	
  	
  ?
Approach:	
  employ	
  a	
  Rao-­‐Blackwellized Particle	
  Filter	
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The conditional posterior of V , Pr(V |U, Ro, �
V

, �) is similarly factorized intoQ
M

j=1 N (V
j

|µv

j

, (⇤v

j

)

�1
) where the mean and precision are similarly defined. The posterior

of the precision �
U

= ��2
U

given U (and simiarly for �
V

) is obtained from the conjugacy of the
Gamma prior and the isotropic Gaussian

Pr(�
U

|U, ↵, �) = �(�
U

|NK

2

+ ↵,
1

2

kUk2
F

+ �). (4)

Although not required for Bayesian PMF, we give the likelihood expression

Pr(R
ij

= r|V, Ro, �
U

, �) = N (r|V >
j

µu

i

,
1

�2
+ V >

j

⇤

V,i

V
j

). (5)

The advantage of the Bayesian approach is that uncertainty of the estimate of U and V are available
which is crucial for exploration in a bandit setting. However, the bandit setting requires maitaining
online estimates of the posterior as the ratings arrive over time which makes it rather awkward
for MCMC. In this paper, we instead employ a sequential Monte-Carlo (SMC) method for online
Bayesian inference [7, 8]. Similar to the Gibbs sampler [6], we exploit the above closed form updates
to design an efficient Rao-Blackwellized particle filter [9] for maintaining the posterior over time.

3 Matrix-Factorization Recommendation Bandit

In a typical deployed recommendation system, users and observed ratings (also called rewards)
arrive over time, and the task of the system is to recommend item for each user so as to maximize
the accumulated expected rewards. The bandit setting arises from the fact that the system needs to
learn over time what items have the best ratings (for a given user) to recommend, and at the same
time sufficiently explore all the items.

We formulate the matrix factorization bandit as follows. We assume that ratings are generated
following Eq. (1) with a fixed but unknown latent features (U⇤, V ⇤

). At time t, the environment
chooses user i

t

and the system (learning agent) needs to recommend an item j
t

. The user then
rates the recommended item with rating r

it,jt ⇠ N (U⇤
it

>V ⇤
jt

, �2
) and the agent receives this rating

as a reward. We abbreviate this as ro

t

= r
it,jt . The system recommends item j

t

using a policy
that takes into account the history of the observed ratings prior to time t, ro

1:t�1, where ro

1:t =

{(i
k

, j
k

, ro

k

)}t

k=1. The highest expected reward the system can earn at time t is max

j

U⇤
i

>V ⇤
j

, and
this is achieved if the optimal item j⇤(i) = argmax

j

U⇤
i

>V ⇤
j

is recommended. Since (U⇤, V ⇤
)

are unknown, the optimal item j⇤(i) is also not known a priori. The quality of the recommendation
system is measured by its expected cumulative regret:

CR = E
"

nX

t=1

[ro

t

� r
it,j

⇤(it)]

#
= E

"
nX

t=1

[ro

t

� max

j

U⇤
it

>V ⇤
j

]

#
(6)

where the expectation is taken with respect to the choice of the user at time t and also the randomness
in the choice of the recommended items by the algorithm.

3.1 Particle Thompson Sampling for Matrix Factorization Bandit

While it is difficult to optimize the cumulative regret directly, TS has been shown to work well in
practice for contextual linear bandit [3]. To use TS for matrix factorization bandit, the main difficulty
is to incrementally update the posterior of the latent features (U, V ) which control the reward struc-
ture. In this subsection, we describe an efficient Rao-Blackwellized particle filter (RBPF) designed
to exploit the specific structure of the probabilistic matrix factorization model. Let ✓ = (�, ↵,�) be
the control parameters and let posterior at time t be p

t

= Pr(U, V, �
U

, �
V

, |ro

1:t, ✓). The standard
particle filter would sample all of the parameters (U, V, �

U

, �
V

). Unfortunately, in our experi-
ments, degeneracy is highly problematic for such a vanilla particle filter (PF) even when �

U

, �
V

are assumed known (see Fig. 4(b)). Our RBPF algorithm maintains the posterior distribution p
t

as
follows. Each of the particle conceptually represents a point-mass at V, �

U

(U and �
V

are integrated
out analytically whenever possible)2. Thus, p

t

(V, �
U

) is approximated by p̂
t

=

1
D

P
D

d=1 �
(V (d)

,�

(d)
U )

where D is the number of particles.
2When there are fewer users than items, a similar strategy can be derived to integrate out U and �

V

instead.
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RBPF	
  (1	
  epoch)	
  vs SGD	
  (50	
  epoch)

Test	
  the	
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  of	
  online	
  matrix	
  factorization	
  using	
  RBPF	
  w.r.t.	
  batch	
  algorithm
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Experiments

Datasets

Baselines
Random
Most	
  popular	
  oracle	
  (in	
  hindsight)
Incremental	
  Collaborative	
  Filtering	
  (ICF)	
  [1]:	
  

Initial	
  period:	
  batch	
  training	
  to	
  find	
  point	
  estimate	
  of	
  U,	
  V	
  (how	
  long	
  this	
  initial	
  
period	
  should	
  be?)
Fix	
  V,	
  update	
  posterior	
  of	
  U,	
  recommend	
  via	
  Thompson	
  Sampling

SGD
1	
  epoch,	
  get	
  point	
  estimate	
  of	
  U,V
Epsilon	
  greedy	
  for	
  recommendation	
  with	
  exploration
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events where the samples from the posterior are concentrated around the true parameters, and thus,
are within (0, 1]K⇥1 as well. Extending our proof to the general setting is not trivial. In particular,
moving from discretized parameters to continuous space introduces the abovementioned ill behaved
posteriors. While increasing the value of K will violate the fact that the best item will be the same
for all users, which allowed us to eliminate N from the regret bound.

5 Experiments and Results
The goal of our experimental evaluation is twofold: (i) evaluate the PTS algorithm for making online
recommendations with respect to various baseline algorithms on several real-world datasets and (ii)
understand the qualitative performance and intuition of PTS.
5.1 Dataset description
We use a synthetic dataset and five real world datasets to evaluate our approach. The synthetic
dataset is generated as follows - At first we generate the user and item latent features (U and V )
of rank K by drawing from a Gaussian distribution N (0, �2

u

) and N (0, �2
v

) respectively. The true
rating matrix is then R⇤

= UV T . We generate the observed rating matrix R from R⇤ by adding
Gaussian noise N (0, �2

) to the true ratings. We use five real world datasets as follows: Movielens
100k, Movielens 1M4, Yahoo Music5, Book crossing6 and EachMovie. A brief description of the
datasets is mentioned in Table 1.

Movielens 100k Movielens 1M Yahoo Music Book crossing EachMovie
# users 943 6040 15400 6841 36656
# items 1682 3900 1000 5644 1621

# ratings 100k 1M 311,704 90k 2.58M
% sparsity 6.3% 4.24% 2.02% 0.23 % 4.34%

Table 1: Characteristics of the datasets used in our study

5.2 Baseline measures

There are no current approaches available that simultaneously learn both the user and item factors
by sampling from the posterior in a bandit setting. From the currently available algorithms, we
choose two kinds of baseline methods - one that sequentially updates the the posterior of the user
features only while fixing the item features to a point estimate (ICF) and another that updates the
MAP estimates of user and item features via stochastic gradient descent (SGD-Eps). A key chal-
lenge in online algorithms is unbiased offline evaluation. One problem in the offline setting is the
partial information available about user feedback, i.e., we only have information about the items
that the user rated. In our experiment, we restrict the recommendation space of all the algorithms
to recommend among the items that the user rated in the entire dataset which makes it possible to
empirically measure regret at every interaction. The baseline measures are as follows:
1) Random : At each iteration, we recommend a random movie to the user.
2) Most Popular : At each iteration, we recommend the most popular movie restricted to the movies
rated by the user on the dataset. Note that this is an unrealistically optimistic baseline for an online
algorithm as it is not possible to know the global popularity of the items beforehand.
3) ICF: The ICF algorithm [2] proceeds by first estimating the user and item latent factors (U and
V ) on a initial training period and then for every interaction thereafter only updates the user features
(U ) assuming the item features (V ) as fixed. We run two scenarios for the ICF algorithm one in
which we use 20% (icf-20) and 50% (icf-50) of the data as the training period respectively. During
this period of training, we randomly recommend a movie to the user to compute the regret. We use
the PMF implementation by [5] for estimating the U and V .
4) SGD-Eps: We learn the latent factors using an online variant of the PMF algorithm [5]. We use
the stochastic gradient descent to update the latent factors with a mini-batch size of 50. In order
to make a recommendation, we use the ✏-greedy strategy and recommend the highest U

i

V T with a
probability ✏ and make a random recommendations otherwise. (✏ is set as 0.95 in our experiments.)

5.3 Results on Synthetic Dataset

We generated the synthetic dataset as mentioned earlier and run the PTS algorithm with 100 particles
for recommendations. We simulate the setting as mentioned in Section 3 and assume that at time t,

4http://grouplens.org/datasets/movielens/
5http://webscope.sandbox.yahoo.com/
6http://www.bookcrossing.com

6

[1]  Xiaoxue Zhao, Weinan Zhang, Jun  Wang:  Interactive  collaborative  filtering. CIKM 2013: 1411-­1420
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a random user i
t

arrives and the system recommends an item j
t

. The user rates the recommended
item r

it,jt and we evaluate the performance of the model by computing the expected cumulative
regret defined in Eq(6). Fig. 2 shows the cumulative regret of the algorithm on the synthetic data
averaged over 100 runs using different size of the matrix and latent features K. The cumulative
regret increases sub-linearly with the number of interactions and this gives us confidence that our
approach works well on the synthetic dataset.
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Figure 2: Cumulative regret on different sizes of the synthetic data and K averaged over 100 runs.
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Figure 3: Comparison with baseline methods on five datasets.
Next, we evaluate our algorithms on five real datasets and compare them to the various baseline
algorithms. We subtract the mean ratings from the data to centre it at zero. To simulate an extreme
cold-start scenario we start from an empty set of user and rating. We then iterate over the datasets
and assume that a random user i

t

has arrived at time t and the system recommends an item j
t

constrained to the items rated by this user in the dataset. We use K = 2 for all the algorithms and
use 30 particles for our approach. For PTS we set the value of �2

= 0.5 and �2
u

= 1, �2
v

= 1.
For PTS-B (Bayesian version, see Algo. 1 for more details), we set �2

= 0.5 and the initial shape
parameters of the Gamma distribution as ↵ = 2 and � = 0.5. For both ICF-20 and ICF-50, we set
�2

= 0.5 and �2
u

= 1. Fig. 3 shows the cumulative regret of all the algorithms on the five datasets7.
Our approach performs significantly better as compared to the baseline algorithms on this diverse
set of datasets. PTS-B with no parameter tuning performs slightly better than PTS and achieves the
best regret. It is important to note that both PTS and PTS-B performs comparable to or even better
than the “most popular” baseline despite not knowing the global popularity in advance. Note that
ICF is very sensitive to the length of the initial training period; it is not clear how to set this apriori.

We also evaluate the performance of our model in an offline setting as follows: We divide the
datasets into training and test set and iterate over the training data triplets (i

t

, j
t

, r
t

) by pretending
that j

t

is the movie recommended by our approach and update the latent factors according to RBPF.

7ICF-20 fails to run on the Bookcrossing dataset as the 20% data is too sparse for the PMF implementation.
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a random user i
t

arrives and the system recommends an item j
t

. The user rates the recommended
item r

it,jt and we evaluate the performance of the model by computing the expected cumulative
regret defined in Eq(6). Fig. 2 shows the cumulative regret of the algorithm on the synthetic data
averaged over 100 runs using different size of the matrix and latent features K. The cumulative
regret increases sub-linearly with the number of interactions and this gives us confidence that our
approach works well on the synthetic dataset.
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Figure 2: Cumulative regret on different sizes of the synthetic data and K averaged over 100 runs.
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Figure 3: Comparison with baseline methods on five datasets.
Next, we evaluate our algorithms on five real datasets and compare them to the various baseline
algorithms. We subtract the mean ratings from the data to centre it at zero. To simulate an extreme
cold-start scenario we start from an empty set of user and rating. We then iterate over the datasets
and assume that a random user i

t

has arrived at time t and the system recommends an item j
t

constrained to the items rated by this user in the dataset. We use K = 2 for all the algorithms and
use 30 particles for our approach. For PTS we set the value of �2

= 0.5 and �2
u

= 1, �2
v

= 1.
For PTS-B (Bayesian version, see Algo. 1 for more details), we set �2

= 0.5 and the initial shape
parameters of the Gamma distribution as ↵ = 2 and � = 0.5. For both ICF-20 and ICF-50, we set
�2

= 0.5 and �2
u

= 1. Fig. 3 shows the cumulative regret of all the algorithms on the five datasets7.
Our approach performs significantly better as compared to the baseline algorithms on this diverse
set of datasets. PTS-B with no parameter tuning performs slightly better than PTS and achieves the
best regret. It is important to note that both PTS and PTS-B performs comparable to or even better
than the “most popular” baseline despite not knowing the global popularity in advance. Note that
ICF is very sensitive to the length of the initial training period; it is not clear how to set this apriori.

We also evaluate the performance of our model in an offline setting as follows: We divide the
datasets into training and test set and iterate over the training data triplets (i

t

, j
t

, r
t

) by pretending
that j

t

is the movie recommended by our approach and update the latent factors according to RBPF.

7ICF-20 fails to run on the Bookcrossing dataset as the 20% data is too sparse for the PMF implementation.
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a random user i
t

arrives and the system recommends an item j
t

. The user rates the recommended
item r

it,jt and we evaluate the performance of the model by computing the expected cumulative
regret defined in Eq(6). Fig. 2 shows the cumulative regret of the algorithm on the synthetic data
averaged over 100 runs using different size of the matrix and latent features K. The cumulative
regret increases sub-linearly with the number of interactions and this gives us confidence that our
approach works well on the synthetic dataset.
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Figure 2: Cumulative regret on different sizes of the synthetic data and K averaged over 100 runs.
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Figure 3: Comparison with baseline methods on five datasets.
Next, we evaluate our algorithms on five real datasets and compare them to the various baseline
algorithms. We subtract the mean ratings from the data to centre it at zero. To simulate an extreme
cold-start scenario we start from an empty set of user and rating. We then iterate over the datasets
and assume that a random user i

t

has arrived at time t and the system recommends an item j
t

constrained to the items rated by this user in the dataset. We use K = 2 for all the algorithms and
use 30 particles for our approach. For PTS we set the value of �2

= 0.5 and �2
u

= 1, �2
v

= 1.
For PTS-B (Bayesian version, see Algo. 1 for more details), we set �2

= 0.5 and the initial shape
parameters of the Gamma distribution as ↵ = 2 and � = 0.5. For both ICF-20 and ICF-50, we set
�2

= 0.5 and �2
u

= 1. Fig. 3 shows the cumulative regret of all the algorithms on the five datasets7.
Our approach performs significantly better as compared to the baseline algorithms on this diverse
set of datasets. PTS-B with no parameter tuning performs slightly better than PTS and achieves the
best regret. It is important to note that both PTS and PTS-B performs comparable to or even better
than the “most popular” baseline despite not knowing the global popularity in advance. Note that
ICF is very sensitive to the length of the initial training period; it is not clear how to set this apriori.

We also evaluate the performance of our model in an offline setting as follows: We divide the
datasets into training and test set and iterate over the training data triplets (i

t

, j
t

, r
t

) by pretending
that j

t

is the movie recommended by our approach and update the latent factors according to RBPF.

7ICF-20 fails to run on the Bookcrossing dataset as the 20% data is too sparse for the PMF implementation.
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Figure 4: a) shows MSE on movielens 1M dataset, the red line is the MSE using the PMF algorithm
b) shows performance of a RBPF (blue line) as compared to vanilla PF (red line) on a synthetic
dataset N,M=10 and c) shows movie feature vectors for a movie with 384 ratings, the red dot is the
feature vector from the ICF-20 algorithm (using 73 ratings). PTS-20 is the feature vector at 20% of
the data (green dots) and PTS-100 at 100% (blue dots).

We compute the recovered matrix ˆR as the average prediction UV T from the particles at each time
step and compute the mean squared error (MSE) on the test dataset at each iteration. Unlike the
batch method such as PMF which takes multiple passes over the data, our method was designed to
have bounded update complexity at each iteration. We ran the algorithm using 80% data for training
and the rest for testing and computed the MSE by averaging the results over 5 runs. Fig. 4(a) shows
the average MSE on the movielens 1M dataset. Our MSE (0.7925) is comparable to the PMF MSE
(0.7718) as shown by the red line. This demonstrates that the RBPF is performing reasonably well
for matrix factorization. In addition, Fig. 4(b) shows that on the synthetic dataset, the vanilla PF
suffers from degeneration as seen by the high variance. To understand the intuition why fixing the
latent item features V as done in the ICF does not work, we perform an experiment as follows: We
run the ICF algorithm on the movielens 100k dataset in which we use 20% of the data for training.
At this point the ICF algorithm fixes the item features V and only updates the user features U . Next,
we run our algorithm and obtain the latent features. We examined the features for one selected movie
from the particles at two time intervals - one when the ICF algorithm fixes them at 20% and another
one in the end as shown in the Fig. 4(c). It shows that movie features have evolved into a different
location and hence fixing them early is not a good idea.

6 Related Work
Probabilistic matrix completion in a bandit setting setting was introduced in the previous work by
Zhao et al. [2]. The ICF algorithm in [2] approximates the posterior of the latent item features by
a single point estimate. Several other bandit algorithms for recommendations have been proposed.
Valko et al. [14] proposed a bandit algorithm for content-based recommendations. In this approach,
the features of the items are extracted from a similarity graph over the items, which is known in
advance. The preferences of each user for the features are learned independently by regressing the
ratings of the items from their features. The key difference in our approach is that we also learn
the features of the items. In other words, we learn both the user and item factors, U and V , while
[14] learn only U . Kocak et al. [15] combine the spectral bandit algorithm in [14] with TS. Gentile
et al. [16] propose a bandit algorithm for recommendations that clusters users in an online fashion
based on the similarity of their preferences. The preferences are learned by regressing the ratings
of the items from their features. The features of the items are the input of the learning algorithm
and they only learn U . So again, the key difference in our approach is that we learn both the user
and item factors, U and V , while Gentile learn only U . Maillard et al. [17] study a bandit problem
where the arms are partitioned into unknown clusters. Our work is strictly more general in the sense
that any clustering on the rows of the rating matrix can be represented as its factorization.

7 Conclusion
We have proposed an efficient method for carrying out matrix factorization (M ⇡ UV T ) in a bandit
setting. The key novelty of our approach is the combined use of Rao-Blackwellized particle filtering
and Thompson sampling (PTS) in matrix factorization recommendation. This allows us to simul-
taneously update the posterior probability of U and V in an online manner while minimizing the
cumulative regret. The state of the art, till now, was to either use point estimates of U and V or use
a point estimate of one of the factor (e.g., U ) and update the posterior probability of the other (V ).
PTS results in substantially better performance on a wide variety of real world data sets.
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