YES We show the termination of the TRS R: f(a(),f(b(),f(a(),x))) -> f(a(),f(b(),f(b(),f(a(),x)))) f(b(),f(b(),f(b(),x))) -> f(b(),f(b(),x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),f(a(),x))) -> f#(a(),f(b(),f(b(),f(a(),x)))) p2: f#(a(),f(b(),f(a(),x))) -> f#(b(),f(b(),f(a(),x))) and R consists of: r1: f(a(),f(b(),f(a(),x))) -> f(a(),f(b(),f(b(),f(a(),x)))) r2: f(b(),f(b(),f(b(),x))) -> f(b(),f(b(),x)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),f(a(),x))) -> f#(a(),f(b(),f(b(),f(a(),x)))) and R consists of: r1: f(a(),f(b(),f(a(),x))) -> f(a(),f(b(),f(b(),f(a(),x)))) r2: f(b(),f(b(),f(b(),x))) -> f(b(),f(b(),x)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,0),(1,0)) x2 a_A() = (1,1) f_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (0,1) b_A() = (0,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(0,0)) x2 a_A() = (1,1) f_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (0,1) b_A() = (0,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(0,0)) x2 a_A() = (2,1) f_A(x1,x2) = x1 + ((0,0),(1,0)) x2 + (0,1) b_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.