YES We show the termination of the TRS R: f(s(x)) -> s(s(f(p(s(x))))) f(|0|()) -> |0|() p(s(x)) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> f#(p(s(x))) p2: f#(s(x)) -> p#(s(x)) and R consists of: r1: f(s(x)) -> s(s(f(p(s(x))))) r2: f(|0|()) -> |0|() r3: p(s(x)) -> x The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> f#(p(s(x))) and R consists of: r1: f(s(x)) -> s(s(f(p(s(x))))) r2: f(|0|()) -> |0|() r3: p(s(x)) -> x The set of usable rules consists of r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((0,1),(0,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,2) p_A(x1) = ((1,1),(1,0)) x1 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (0,0) s_A(x1) = ((1,1),(0,0)) x1 + (1,1) p_A(x1) = x1 + (0,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (0,0) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) p_A(x1) = ((1,1),(1,1)) x1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.