YES We show the termination of the TRS R: O(|0|()) -> |0|() +(|0|(),x) -> x +(x,|0|()) -> x +(O(x),O(y)) -> O(+(x,y)) +(O(x),I(y)) -> I(+(x,y)) +(I(x),O(y)) -> I(+(x,y)) +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) *(|0|(),x) -> |0|() *(x,|0|()) -> |0|() *(O(x),y) -> O(*(x,y)) *(I(x),y) -> +(O(*(x,y)),y) -(x,|0|()) -> x -(|0|(),x) -> |0|() -(O(x),O(y)) -> O(-(x,y)) -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) -(I(x),O(y)) -> I(-(x,y)) -(I(x),I(y)) -> O(-(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(O(x),O(y)) -> O#(+(x,y)) p2: +#(O(x),O(y)) -> +#(x,y) p3: +#(O(x),I(y)) -> +#(x,y) p4: +#(I(x),O(y)) -> +#(x,y) p5: +#(I(x),I(y)) -> O#(+(+(x,y),I(|0|()))) p6: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) p7: +#(I(x),I(y)) -> +#(x,y) p8: *#(O(x),y) -> O#(*(x,y)) p9: *#(O(x),y) -> *#(x,y) p10: *#(I(x),y) -> +#(O(*(x,y)),y) p11: *#(I(x),y) -> O#(*(x,y)) p12: *#(I(x),y) -> *#(x,y) p13: -#(O(x),O(y)) -> O#(-(x,y)) p14: -#(O(x),O(y)) -> -#(x,y) p15: -#(O(x),I(y)) -> -#(-(x,y),I(|1|())) p16: -#(O(x),I(y)) -> -#(x,y) p17: -#(I(x),O(y)) -> -#(x,y) p18: -#(I(x),I(y)) -> O#(-(x,y)) p19: -#(I(x),I(y)) -> -#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The estimated dependency graph contains the following SCCs: {p9, p12} {p2, p3, p4, p6, p7} {p14, p15, p16, p17, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(I(x),y) -> *#(x,y) p2: *#(O(x),y) -> *#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((1,1),(1,0)) x1 I_A(x1) = ((1,1),(1,1)) x1 + (1,1) O_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((1,1),(1,0)) x1 I_A(x1) = ((0,1),(1,1)) x1 + (1,1) O_A(x1) = ((1,1),(0,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((1,1),(1,1)) x1 I_A(x1) = (1,1) O_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(O(x),O(y)) -> +#(x,y) p2: +#(I(x),I(y)) -> +#(x,y) p3: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) p4: +#(O(x),I(y)) -> +#(x,y) p5: +#(I(x),O(y)) -> +#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = x2 O_A(x1) = x1 + (1,1) I_A(x1) = x1 + (3,1) +_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (1,1) |0|_A() = (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,0),(1,0)) x2 O_A(x1) = x1 + (1,2) I_A(x1) = x1 + (1,1) +_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (0,1) |0|_A() = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((0,0),(1,1)) x2 O_A(x1) = ((0,1),(1,0)) x1 + (3,1) I_A(x1) = (1,1) +_A(x1,x2) = ((0,1),(1,1)) x2 + (2,1) |0|_A() = (5,1) The next rules are strictly ordered: p1, p2, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = x1 + ((1,1),(0,0)) x2 I_A(x1) = ((1,0),(1,0)) x1 + (3,2) +_A(x1,x2) = x1 + x2 + (1,2) |0|_A() = (0,1) O_A(x1) = ((1,0),(1,0)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,1),(1,0)) x2 I_A(x1) = x1 + (1,1) +_A(x1,x2) = x1 + x2 + (0,1) |0|_A() = (2,5) O_A(x1) = (1,4) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = (0,0) I_A(x1) = x1 + (0,1) +_A(x1,x2) = (1,0) |0|_A() = (1,2) O_A(x1) = (0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(O(x),O(y)) -> -#(x,y) p2: -#(I(x),I(y)) -> -#(x,y) p3: -#(I(x),O(y)) -> -#(x,y) p4: -#(O(x),I(y)) -> -#(x,y) p5: -#(O(x),I(y)) -> -#(-(x,y),I(|1|())) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The set of usable rules consists of r1, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 O_A(x1) = ((0,0),(1,1)) x1 + (0,4) I_A(x1) = ((0,0),(1,1)) x1 + (1,2) -_A(x1,x2) = x1 + x2 + (0,1) |1|_A() = (0,0) |0|_A() = (0,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 O_A(x1) = (5,4) I_A(x1) = (1,1) -_A(x1,x2) = x1 + ((1,1),(0,1)) x2 + (1,1) |1|_A() = (1,1) |0|_A() = (0,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((1,0),(1,0)) x2 O_A(x1) = (0,4) I_A(x1) = (2,1) -_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (0,1) |1|_A() = (1,1) |0|_A() = (1,5) The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.