YES We show the termination of the TRS R: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) sqr(|0|()) -> |0|() sqr(s(X)) -> s(add(sqr(X),dbl(X))) dbl(|0|()) -> |0|() dbl(s(X)) -> s(s(dbl(X))) add(|0|(),X) -> X add(s(X),Y) -> s(add(X,Y)) first(|0|(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) half(|0|()) -> |0|() half(s(|0|())) -> |0|() half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: terms#(N) -> sqr#(N) p2: sqr#(s(X)) -> s#(add(sqr(X),dbl(X))) p3: sqr#(s(X)) -> add#(sqr(X),dbl(X)) p4: sqr#(s(X)) -> sqr#(X) p5: sqr#(s(X)) -> dbl#(X) p6: dbl#(s(X)) -> s#(s(dbl(X))) p7: dbl#(s(X)) -> s#(dbl(X)) p8: dbl#(s(X)) -> dbl#(X) p9: add#(s(X),Y) -> s#(add(X,Y)) p10: add#(s(X),Y) -> add#(X,Y) p11: first#(s(X),cons(Y,Z)) -> activate#(Z) p12: half#(s(s(X))) -> s#(half(X)) p13: half#(s(s(X))) -> half#(X) p14: activate#(n__terms(X)) -> terms#(activate(X)) p15: activate#(n__terms(X)) -> activate#(X) p16: activate#(n__s(X)) -> s#(activate(X)) p17: activate#(n__s(X)) -> activate#(X) p18: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p19: activate#(n__first(X1,X2)) -> activate#(X1) p20: activate#(n__first(X1,X2)) -> activate#(X2) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The estimated dependency graph contains the following SCCs: {p11, p15, p17, p18, p19, p20} {p4} {p10} {p8} {p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__first(X1,X2)) -> activate#(X1) p3: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p4: first#(s(X),cons(Y,Z)) -> activate#(Z) p5: activate#(n__s(X)) -> activate#(X) p6: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r14, r15, r16, r17, r18, r19, r20 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 n__first_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (1,4) first#_A(x1,x2) = ((0,1),(0,0)) x2 + (1,0) activate_A(x1) = ((1,1),(0,1)) x1 + (2,0) s_A(x1) = x1 + (1,0) cons_A(x1,x2) = ((0,1),(0,0)) x1 + x2 n__s_A(x1) = x1 n__terms_A(x1) = x1 dbl_A(x1) = (2,1) |0|_A() = (0,0) add_A(x1,x2) = ((1,0),(1,1)) x2 + (2,0) sqr_A(x1) = x1 + (1,3) terms_A(x1) = x1 + (1,0) recip_A(x1) = x1 first_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (2,4) nil_A() = (0,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = (0,1) n__first_A(x1,x2) = ((0,0),(1,1)) x2 + (1,1) first#_A(x1,x2) = (1,0) activate_A(x1) = x1 + (1,1) s_A(x1) = (2,3) cons_A(x1,x2) = (3,4) n__s_A(x1) = (3,1) n__terms_A(x1) = (3,1) dbl_A(x1) = (1,1) |0|_A() = (2,2) add_A(x1,x2) = (1,1) sqr_A(x1) = x1 + (1,1) terms_A(x1) = (2,3) recip_A(x1) = x1 first_A(x1,x2) = x2 + (2,3) nil_A() = (0,4) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = (0,0) n__first_A(x1,x2) = (2,4) first#_A(x1,x2) = (1,1) activate_A(x1) = (2,1) s_A(x1) = (1,2) cons_A(x1,x2) = (4,3) n__s_A(x1) = (2,3) n__terms_A(x1) = (4,3) dbl_A(x1) = (2,1) |0|_A() = (5,3) add_A(x1,x2) = (0,1) sqr_A(x1) = ((0,1),(0,0)) x1 + (1,2) terms_A(x1) = (3,2) recip_A(x1) = ((0,0),(1,0)) x1 + (1,0) first_A(x1,x2) = x2 + (1,3) nil_A() = (0,0) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,0)) x1 n__s_A(x1) = ((1,1),(1,1)) x1 + (1,1) n__terms_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,1)) x1 n__s_A(x1) = ((1,1),(1,1)) x1 + (1,1) n__terms_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,1)) x1 n__s_A(x1) = ((1,1),(1,1)) x1 + (1,1) n__terms_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sqr#(s(X)) -> sqr#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: sqr#_A(x1) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: sqr#_A(x1) = x1 s_A(x1) = x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: sqr#_A(x1) = ((0,1),(1,1)) x1 s_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(s(X),Y) -> add#(X,Y) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: add#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: add#_A(x1,x2) = ((1,1),(0,1)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: add#_A(x1,x2) = ((0,0),(1,0)) x1 s_A(x1) = ((1,1),(0,0)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> dbl#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: dbl#_A(x1) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: dbl#_A(x1) = x1 s_A(x1) = x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: dbl#_A(x1) = ((0,1),(1,1)) x1 s_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(X))) -> half#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: half#_A(x1) = x1 s_A(x1) = x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: half#_A(x1) = ((0,1),(0,0)) x1 s_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: half#_A(x1) = (0,0) s_A(x1) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.