YES We show the termination of the TRS R: f(|0|()) -> cons(|0|(),n__f(s(|0|()))) f(s(|0|())) -> f(p(s(|0|()))) p(s(X)) -> X f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(|0|())) -> f#(p(s(|0|()))) p2: f#(s(|0|())) -> p#(s(|0|())) p3: activate#(n__f(X)) -> f#(X) and R consists of: r1: f(|0|()) -> cons(|0|(),n__f(s(|0|()))) r2: f(s(|0|())) -> f(p(s(|0|()))) r3: p(s(X)) -> X r4: f(X) -> n__f(X) r5: activate(n__f(X)) -> f(X) r6: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(|0|())) -> f#(p(s(|0|()))) and R consists of: r1: f(|0|()) -> cons(|0|(),n__f(s(|0|()))) r2: f(s(|0|())) -> f(p(s(|0|()))) r3: p(s(X)) -> X r4: f(X) -> n__f(X) r5: activate(n__f(X)) -> f(X) r6: activate(X) -> X The set of usable rules consists of r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (2,1) |0|_A() = (1,1) p_A(x1) = ((0,1),(1,1)) x1 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (0,0) s_A(x1) = (1,1) |0|_A() = (1,1) p_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (0,0) s_A(x1) = (1,1) |0|_A() = (1,1) p_A(x1) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.