YES We show the termination of the TRS R: a__first(|0|(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(|0|()) -> |0|() mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) mark(cons(X1,X2)) -> cons(mark(X1),X2) a__first(X1,X2) -> first(X1,X2) a__from(X) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p4: mark#(first(X1,X2)) -> mark#(X1) p5: mark#(first(X1,X2)) -> mark#(X2) p6: mark#(from(X)) -> a__from#(mark(X)) p7: mark#(from(X)) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(s(X)) -> mark#(X) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> a__from#(mark(X)) p6: a__from#(X) -> mark#(X) p7: mark#(first(X1,X2)) -> mark#(X2) p8: mark#(first(X1,X2)) -> mark#(X1) p9: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a__first#_A(x1,x2) = x1 + ((0,1),(0,1)) x2 s_A(x1) = x1 + (1,0) cons_A(x1,x2) = x1 + (3,2) mark#_A(x1) = ((0,1),(0,1)) x1 + (1,0) from_A(x1) = x1 + (1,2) a__from#_A(x1) = ((0,1),(0,1)) x1 + (3,0) mark_A(x1) = ((1,1),(0,1)) x1 + (5,0) first_A(x1,x2) = ((0,1),(0,1)) x1 + x2 a__first_A(x1,x2) = ((0,1),(0,1)) x1 + x2 + (4,0) |0|_A() = (1,1) nil_A() = (1,1) a__from_A(x1) = x1 + (3,2) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a__first#_A(x1,x2) = (1,1) s_A(x1) = x1 + (1,2) cons_A(x1,x2) = (2,0) mark#_A(x1) = (0,0) from_A(x1) = x1 + (4,3) a__from#_A(x1) = (0,0) mark_A(x1) = ((0,1),(0,1)) x1 + (0,1) first_A(x1,x2) = (2,0) a__first_A(x1,x2) = (1,2) |0|_A() = (2,1) nil_A() = (2,3) a__from_A(x1) = x1 + (3,3) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: a__first#_A(x1,x2) = (1,1) s_A(x1) = (0,1) cons_A(x1,x2) = (3,1) mark#_A(x1) = (0,0) from_A(x1) = (1,1) a__from#_A(x1) = (0,0) mark_A(x1) = (1,1) first_A(x1,x2) = (3,3) a__first_A(x1,x2) = (2,2) |0|_A() = (2,2) nil_A() = (3,3) a__from_A(x1) = x1 The next rules are strictly ordered: p1, p2, p4, p6, p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(from(X)) -> a__from#(mark(X)) p3: mark#(first(X1,X2)) -> mark#(X2) p4: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) first_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 s_A(x1) = ((0,0),(1,1)) x1 + (1,1) first_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = (0,0) s_A(x1) = (1,1) first_A(x1,x2) = (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.