YES We show the termination of the TRS R: first(|0|(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p3: activate#(n__first(X1,X2)) -> activate#(X1) p4: activate#(n__first(X1,X2)) -> activate#(X2) p5: activate#(n__from(X)) -> from#(activate(X)) p6: activate#(n__from(X)) -> activate#(X) p7: activate#(n__s(X)) -> s#(activate(X)) p8: activate#(n__s(X)) -> activate#(X) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__from(X)) -> activate#(X) p4: activate#(n__first(X1,X2)) -> activate#(X2) p5: activate#(n__first(X1,X2)) -> activate#(X1) p6: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: first#_A(x1,x2) = ((0,1),(0,0)) x2 + (1,0) s_A(x1) = x1 + (2,0) cons_A(x1,x2) = x2 + (1,0) activate#_A(x1) = ((0,1),(0,0)) x1 n__s_A(x1) = x1 + (1,0) n__from_A(x1) = ((1,1),(0,1)) x1 + (2,1) n__first_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (1,2) activate_A(x1) = x1 + (2,0) first_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (2,2) |0|_A() = (1,1) nil_A() = (0,0) from_A(x1) = ((1,1),(0,1)) x1 + (2,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: first#_A(x1,x2) = (0,0) s_A(x1) = (4,2) cons_A(x1,x2) = (3,0) activate#_A(x1) = (1,1) n__s_A(x1) = (1,3) n__from_A(x1) = (1,1) n__first_A(x1,x2) = (0,3) activate_A(x1) = x1 + (2,1) first_A(x1,x2) = (0,2) |0|_A() = (1,1) nil_A() = (1,3) from_A(x1) = (2,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: first#_A(x1,x2) = (0,0) s_A(x1) = (4,3) cons_A(x1,x2) = (5,4) activate#_A(x1) = (1,1) n__s_A(x1) = (1,1) n__from_A(x1) = (1,0) n__first_A(x1,x2) = (5,1) activate_A(x1) = x1 + (3,1) first_A(x1,x2) = (4,3) |0|_A() = (1,1) nil_A() = (5,4) from_A(x1) = (2,0) The next rules are strictly ordered: p1, p3, p4, p5, p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,1)) x1 n__s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(1,1)) x1 n__s_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.