YES We show the termination of the TRS R: active(c()) -> mark(f(g(c()))) active(f(g(X))) -> mark(g(X)) proper(c()) -> ok(c()) proper(f(X)) -> f(proper(X)) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(c()) -> f#(g(c())) p2: active#(c()) -> g#(c()) p3: proper#(f(X)) -> f#(proper(X)) p4: proper#(f(X)) -> proper#(X) p5: proper#(g(X)) -> g#(proper(X)) p6: proper#(g(X)) -> proper#(X) p7: f#(ok(X)) -> f#(X) p8: g#(ok(X)) -> g#(X) p9: top#(mark(X)) -> top#(proper(X)) p10: top#(mark(X)) -> proper#(X) p11: top#(ok(X)) -> top#(active(X)) p12: top#(ok(X)) -> active#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p9, p11} {p4, p6} {p7} {p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((0,1),(0,0)) x1 ok_A(x1) = ((0,0),(1,0)) x1 + (1,2) active_A(x1) = ((0,0),(1,0)) x1 + (2,1) mark_A(x1) = ((0,0),(1,1)) x1 + (1,2) proper_A(x1) = ((1,1),(1,1)) x1 + (0,1) f_A(x1) = (7,9) g_A(x1) = (2,4) c_A() = (17,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = (0,0) ok_A(x1) = (2,3) active_A(x1) = (0,1) mark_A(x1) = (0,2) proper_A(x1) = x1 + (0,1) f_A(x1) = (1,2) g_A(x1) = (3,2) c_A() = (3,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = (0,0) ok_A(x1) = (1,0) active_A(x1) = (1,1) mark_A(x1) = (0,1) proper_A(x1) = (0,0) f_A(x1) = (2,1) g_A(x1) = (2,0) c_A() = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(g(X)) -> proper#(X) p2: proper#(f(X)) -> proper#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(ok(X)) -> f#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(1,0)) x1 ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(1,0)) x1 ok_A(x1) = ((1,1),(0,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((0,1),(1,1)) x1 ok_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(ok(X)) -> g#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,1),(1,1)) x1 ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = x1 ok_A(x1) = x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((0,1),(1,1)) x1 ok_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.