YES We show the termination of the TRS R: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) a__from(X) -> cons(mark(X),from(s(X))) mark(|2nd|(X)) -> a__2nd(mark(X)) mark(from(X)) -> a__from(mark(X)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(s(X)) -> s(mark(X)) mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) a__2nd(X) -> |2nd|(X) a__from(X) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__2nd#(cons1(X,cons(Y,Z))) -> mark#(Y) p2: a__2nd#(cons(X,X1)) -> a__2nd#(cons1(mark(X),mark(X1))) p3: a__2nd#(cons(X,X1)) -> mark#(X) p4: a__2nd#(cons(X,X1)) -> mark#(X1) p5: a__from#(X) -> mark#(X) p6: mark#(|2nd|(X)) -> a__2nd#(mark(X)) p7: mark#(|2nd|(X)) -> mark#(X) p8: mark#(from(X)) -> a__from#(mark(X)) p9: mark#(from(X)) -> mark#(X) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(s(X)) -> mark#(X) p12: mark#(cons1(X1,X2)) -> mark#(X1) p13: mark#(cons1(X1,X2)) -> mark#(X2) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__2nd#(cons1(X,cons(Y,Z))) -> mark#(Y) p2: mark#(cons1(X1,X2)) -> mark#(X2) p3: mark#(cons1(X1,X2)) -> mark#(X1) p4: mark#(s(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(from(X)) -> mark#(X) p7: mark#(from(X)) -> a__from#(mark(X)) p8: a__from#(X) -> mark#(X) p9: mark#(|2nd|(X)) -> mark#(X) p10: mark#(|2nd|(X)) -> a__2nd#(mark(X)) p11: a__2nd#(cons(X,X1)) -> mark#(X1) p12: a__2nd#(cons(X,X1)) -> mark#(X) p13: a__2nd#(cons(X,X1)) -> a__2nd#(cons1(mark(X),mark(X1))) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a__2nd#_A(x1) = ((1,1),(1,1)) x1 cons1_A(x1,x2) = x1 + x2 + (1,1) cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,0)) x2 + (1,2) mark#_A(x1) = ((1,0),(1,0)) x1 + (2,0) s_A(x1) = ((1,1),(0,0)) x1 + (1,1) from_A(x1) = ((1,1),(1,1)) x1 + (2,6) a__from#_A(x1) = ((1,0),(1,0)) x1 + (4,0) mark_A(x1) = x1 |2nd|_A(x1) = ((1,1),(1,1)) x1 + (1,1) a__2nd_A(x1) = ((1,1),(1,1)) x1 + (1,1) a__from_A(x1) = ((1,1),(1,1)) x1 + (2,6) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a__2nd#_A(x1) = x1 + (1,5) cons1_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,1)) x2 + (0,11) cons_A(x1,x2) = x1 + (0,1) mark#_A(x1) = ((1,1),(0,1)) x1 s_A(x1) = x1 + (1,0) from_A(x1) = ((1,1),(0,1)) x1 + (1,7) a__from#_A(x1) = ((1,1),(0,0)) x1 mark_A(x1) = ((1,1),(0,1)) x1 + (3,5) |2nd|_A(x1) = (1,4) a__2nd_A(x1) = (2,4) a__from_A(x1) = ((1,1),(0,1)) x1 + (2,7) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: a__2nd#_A(x1) = ((0,1),(0,0)) x1 + (2,2) cons1_A(x1,x2) = ((1,1),(0,1)) x2 + (1,0) cons_A(x1,x2) = x1 + (1,0) mark#_A(x1) = ((1,1),(1,0)) x1 s_A(x1) = ((0,0),(1,0)) x1 + (1,1) from_A(x1) = ((1,1),(1,0)) x1 + (1,1) a__from#_A(x1) = ((1,1),(1,0)) x1 mark_A(x1) = ((1,0),(1,1)) x1 + (1,1) |2nd|_A(x1) = (1,1) a__2nd_A(x1) = (3,4) a__from_A(x1) = ((0,0),(1,0)) x1 + (0,2) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p8, p9, p10, p11, p12, p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> a__from#(mark(X)) and R consists of: r1: a__2nd(cons1(X,cons(Y,Z))) -> mark(Y) r2: a__2nd(cons(X,X1)) -> a__2nd(cons1(mark(X),mark(X1))) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(|2nd|(X)) -> a__2nd(mark(X)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(cons(X1,X2)) -> cons(mark(X1),X2) r7: mark(s(X)) -> s(mark(X)) r8: mark(cons1(X1,X2)) -> cons1(mark(X1),mark(X2)) r9: a__2nd(X) -> |2nd|(X) r10: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: (no SCCs)