YES We show the termination of the TRS R: |2nd|(cons1(X,cons(Y,Z))) -> Y |2nd|(cons(X,X1)) -> |2nd|(cons1(X,activate(X1))) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(cons(X,X1)) -> |2nd|#(cons1(X,activate(X1))) p2: |2nd|#(cons(X,X1)) -> activate#(X1) p3: activate#(n__from(X)) -> from#(activate(X)) p4: activate#(n__from(X)) -> activate#(X) p5: activate#(n__s(X)) -> s#(activate(X)) p6: activate#(n__s(X)) -> activate#(X) and R consists of: r1: |2nd|(cons1(X,cons(Y,Z))) -> Y r2: |2nd|(cons(X,X1)) -> |2nd|(cons1(X,activate(X1))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__from(X)) -> from(activate(X)) r7: activate(n__s(X)) -> s(activate(X)) r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: |2nd|(cons1(X,cons(Y,Z))) -> Y r2: |2nd|(cons(X,X1)) -> |2nd|(cons1(X,activate(X1))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__from(X)) -> from(activate(X)) r7: activate(n__s(X)) -> s(activate(X)) r8: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,1)) x1 n__s_A(x1) = ((1,1),(1,1)) x1 + (1,1) n__from_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,1)) x1 n__s_A(x1) = ((1,1),(1,1)) x1 + (1,1) n__from_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,1)) x1 n__s_A(x1) = ((1,1),(0,1)) x1 + (1,1) n__from_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains.