YES We show the termination of the TRS R: f(X) -> if(X,c(),n__f(n__true())) if(true(),X,Y) -> X if(false(),X,Y) -> activate(Y) f(X) -> n__f(X) true() -> n__true() activate(n__f(X)) -> f(activate(X)) activate(n__true()) -> true() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> if#(X,c(),n__f(n__true())) p2: if#(false(),X,Y) -> activate#(Y) p3: activate#(n__f(X)) -> f#(activate(X)) p4: activate#(n__f(X)) -> activate#(X) p5: activate#(n__true()) -> true#() and R consists of: r1: f(X) -> if(X,c(),n__f(n__true())) r2: if(true(),X,Y) -> X r3: if(false(),X,Y) -> activate(Y) r4: f(X) -> n__f(X) r5: true() -> n__true() r6: activate(n__f(X)) -> f(activate(X)) r7: activate(n__true()) -> true() r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> if#(X,c(),n__f(n__true())) p2: if#(false(),X,Y) -> activate#(Y) p3: activate#(n__f(X)) -> activate#(X) p4: activate#(n__f(X)) -> f#(activate(X)) and R consists of: r1: f(X) -> if(X,c(),n__f(n__true())) r2: if(true(),X,Y) -> X r3: if(false(),X,Y) -> activate(Y) r4: f(X) -> n__f(X) r5: true() -> n__true() r6: activate(n__f(X)) -> f(activate(X)) r7: activate(n__true()) -> true() r8: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = x1 + (2,1) if#_A(x1,x2,x3) = x1 + ((1,1),(1,0)) x3 c_A() = (0,0) n__f_A(x1) = ((1,0),(1,1)) x1 + (1,1) n__true_A() = (0,0) false_A() = (1,1) activate#_A(x1) = ((0,1),(1,0)) x1 + (1,0) activate_A(x1) = ((1,0),(1,1)) x1 + (0,1) if_A(x1,x2,x3) = ((1,0),(1,1)) x1 + x2 + ((1,0),(1,1)) x3 true_A() = (0,1) f_A(x1) = ((1,0),(1,1)) x1 + (1,2) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (0,0) if#_A(x1,x2,x3) = (0,0) c_A() = (1,1) n__f_A(x1) = x1 + (4,1) n__true_A() = (1,1) false_A() = (1,0) activate#_A(x1) = (0,0) activate_A(x1) = ((1,1),(0,1)) x1 + (1,0) if_A(x1,x2,x3) = ((0,1),(0,0)) x1 + x2 + (2,0) true_A() = (2,1) f_A(x1) = ((0,1),(0,1)) x1 + (4,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (0,0) if#_A(x1,x2,x3) = (0,0) c_A() = (1,1) n__f_A(x1) = (0,1) n__true_A() = (1,1) false_A() = (1,1) activate#_A(x1) = (0,0) activate_A(x1) = x1 + (4,1) if_A(x1,x2,x3) = x2 + (1,0) true_A() = (5,2) f_A(x1) = (3,1) The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> if#(X,c(),n__f(n__true())) p2: if#(false(),X,Y) -> activate#(Y) p3: activate#(n__f(X)) -> f#(activate(X)) and R consists of: r1: f(X) -> if(X,c(),n__f(n__true())) r2: if(true(),X,Y) -> X r3: if(false(),X,Y) -> activate(Y) r4: f(X) -> n__f(X) r5: true() -> n__true() r6: activate(n__f(X)) -> f(activate(X)) r7: activate(n__true()) -> true() r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> if#(X,c(),n__f(n__true())) p2: if#(false(),X,Y) -> activate#(Y) p3: activate#(n__f(X)) -> f#(activate(X)) and R consists of: r1: f(X) -> if(X,c(),n__f(n__true())) r2: if(true(),X,Y) -> X r3: if(false(),X,Y) -> activate(Y) r4: f(X) -> n__f(X) r5: true() -> n__true() r6: activate(n__f(X)) -> f(activate(X)) r7: activate(n__true()) -> true() r8: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = x1 + (2,2) if#_A(x1,x2,x3) = x1 + ((1,0),(1,1)) x3 c_A() = (0,0) n__f_A(x1) = ((1,1),(0,1)) x1 + (1,1) n__true_A() = (0,0) false_A() = (3,1) activate#_A(x1) = ((1,0),(1,1)) x1 + (2,0) activate_A(x1) = ((1,1),(0,1)) x1 if_A(x1,x2,x3) = ((0,1),(0,1)) x1 + x2 + ((1,1),(0,1)) x3 true_A() = (0,0) f_A(x1) = ((1,1),(0,1)) x1 + (2,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(0,0)) x1 + (0,1) if#_A(x1,x2,x3) = ((1,0),(1,0)) x3 + (1,1) c_A() = (1,1) n__f_A(x1) = (1,2) n__true_A() = (1,1) false_A() = (1,1) activate#_A(x1) = ((0,1),(0,0)) x1 activate_A(x1) = x1 + (2,1) if_A(x1,x2,x3) = x2 + (1,0) true_A() = (3,1) f_A(x1) = (3,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = x1 if#_A(x1,x2,x3) = x3 + (1,0) c_A() = (1,1) n__f_A(x1) = (4,2) n__true_A() = (2,2) false_A() = (1,1) activate#_A(x1) = (0,0) activate_A(x1) = ((1,1),(1,1)) x1 + (2,1) if_A(x1,x2,x3) = x2 + (1,0) true_A() = (1,1) f_A(x1) = (3,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.