YES We show the termination of the TRS R: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) active(f(X1,X2)) -> f(active(X1),X2) active(g(X)) -> g(active(X)) f(mark(X1),X2) -> mark(f(X1,X2)) g(mark(X)) -> mark(g(X)) proper(f(X1,X2)) -> f(proper(X1),proper(X2)) proper(g(X)) -> g(proper(X)) f(ok(X1),ok(X2)) -> ok(f(X1,X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(g(X),Y)) -> f#(X,f(g(X),Y)) p2: active#(f(X1,X2)) -> f#(active(X1),X2) p3: active#(f(X1,X2)) -> active#(X1) p4: active#(g(X)) -> g#(active(X)) p5: active#(g(X)) -> active#(X) p6: f#(mark(X1),X2) -> f#(X1,X2) p7: g#(mark(X)) -> g#(X) p8: proper#(f(X1,X2)) -> f#(proper(X1),proper(X2)) p9: proper#(f(X1,X2)) -> proper#(X1) p10: proper#(f(X1,X2)) -> proper#(X2) p11: proper#(g(X)) -> g#(proper(X)) p12: proper#(g(X)) -> proper#(X) p13: f#(ok(X1),ok(X2)) -> f#(X1,X2) p14: g#(ok(X)) -> g#(X) p15: top#(mark(X)) -> top#(proper(X)) p16: top#(mark(X)) -> proper#(X) p17: top#(ok(X)) -> top#(active(X)) p18: top#(ok(X)) -> active#(X) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: active(f(X1,X2)) -> f(active(X1),X2) r3: active(g(X)) -> g(active(X)) r4: f(mark(X1),X2) -> mark(f(X1,X2)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X1,X2)) -> f(proper(X1),proper(X2)) r7: proper(g(X)) -> g(proper(X)) r8: f(ok(X1),ok(X2)) -> ok(f(X1,X2)) r9: g(ok(X)) -> ok(g(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p15, p17} {p3, p5} {p9, p10, p12} {p6, p13} {p7, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: active(f(X1,X2)) -> f(active(X1),X2) r3: active(g(X)) -> g(active(X)) r4: f(mark(X1),X2) -> mark(f(X1,X2)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X1,X2)) -> f(proper(X1),proper(X2)) r7: proper(g(X)) -> g(proper(X)) r8: f(ok(X1),ok(X2)) -> ok(f(X1,X2)) r9: g(ok(X)) -> ok(g(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(0,0)) x1 ok_A(x1) = ((0,0),(1,1)) x1 + (2,2) active_A(x1) = ((0,0),(1,1)) x1 + (2,1) mark_A(x1) = ((0,0),(1,1)) x1 + (2,0) proper_A(x1) = x1 + (0,1) f_A(x1,x2) = ((0,0),(1,1)) x1 + (2,1) g_A(x1) = x1 + (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((0,1),(0,0)) x1 ok_A(x1) = (1,2) active_A(x1) = (3,2) mark_A(x1) = (0,2) proper_A(x1) = ((0,0),(1,1)) x1 + (3,1) f_A(x1,x2) = (2,2) g_A(x1) = (2,2) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = (0,0) ok_A(x1) = (2,2) active_A(x1) = (4,2) mark_A(x1) = (5,3) proper_A(x1) = (2,1) f_A(x1,x2) = (3,2) g_A(x1) = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(g(X)) -> active#(X) p2: active#(f(X1,X2)) -> active#(X1) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: active(f(X1,X2)) -> f(active(X1),X2) r3: active(g(X)) -> g(active(X)) r4: f(mark(X1),X2) -> mark(f(X1,X2)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X1,X2)) -> f(proper(X1),proper(X2)) r7: proper(g(X)) -> g(proper(X)) r8: f(ok(X1),ok(X2)) -> ok(f(X1,X2)) r9: g(ok(X)) -> ok(g(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(g(X)) -> proper#(X) p2: proper#(f(X1,X2)) -> proper#(X2) p3: proper#(f(X1,X2)) -> proper#(X1) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: active(f(X1,X2)) -> f(active(X1),X2) r3: active(g(X)) -> g(active(X)) r4: f(mark(X1),X2) -> mark(f(X1,X2)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X1,X2)) -> f(proper(X1),proper(X2)) r7: proper(g(X)) -> g(proper(X)) r8: f(ok(X1),ok(X2)) -> ok(f(X1,X2)) r9: g(ok(X)) -> ok(g(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((0,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = (0,0) g_A(x1) = (1,1) f_A(x1,x2) = (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X1),X2) -> f#(X1,X2) p2: f#(ok(X1),ok(X2)) -> f#(X1,X2) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: active(f(X1,X2)) -> f(active(X1),X2) r3: active(g(X)) -> g(active(X)) r4: f(mark(X1),X2) -> mark(f(X1,X2)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X1,X2)) -> f(proper(X1),proper(X2)) r7: proper(g(X)) -> g(proper(X)) r8: f(ok(X1),ok(X2)) -> ok(f(X1,X2)) r9: g(ok(X)) -> ok(g(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(0,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(ok(X)) -> g#(X) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: active(f(X1,X2)) -> f(active(X1),X2) r3: active(g(X)) -> g(active(X)) r4: f(mark(X1),X2) -> mark(f(X1,X2)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X1,X2)) -> f(proper(X1),proper(X2)) r7: proper(g(X)) -> g(proper(X)) r8: f(ok(X1),ok(X2)) -> ok(f(X1,X2)) r9: g(ok(X)) -> ok(g(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,1),(0,1)) x1 mark_A(x1) = ((0,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.