YES We show the termination of the TRS R: f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(X)) -> c#(n__f(n__g(n__f(X)))) p2: c#(X) -> d#(activate(X)) p3: c#(X) -> activate#(X) p4: h#(X) -> c#(n__d(X)) p5: activate#(n__f(X)) -> f#(activate(X)) p6: activate#(n__f(X)) -> activate#(X) p7: activate#(n__g(X)) -> g#(X) p8: activate#(n__d(X)) -> d#(X) and R consists of: r1: f(f(X)) -> c(n__f(n__g(n__f(X)))) r2: c(X) -> d(activate(X)) r3: h(X) -> c(n__d(X)) r4: f(X) -> n__f(X) r5: g(X) -> n__g(X) r6: d(X) -> n__d(X) r7: activate(n__f(X)) -> f(activate(X)) r8: activate(n__g(X)) -> g(X) r9: activate(n__d(X)) -> d(X) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(X)) -> c#(n__f(n__g(n__f(X)))) p2: c#(X) -> activate#(X) p3: activate#(n__f(X)) -> activate#(X) p4: activate#(n__f(X)) -> f#(activate(X)) and R consists of: r1: f(f(X)) -> c(n__f(n__g(n__f(X)))) r2: c(X) -> d(activate(X)) r3: h(X) -> c(n__d(X)) r4: f(X) -> n__f(X) r5: g(X) -> n__g(X) r6: d(X) -> n__d(X) r7: activate(n__f(X)) -> f(activate(X)) r8: activate(n__g(X)) -> g(X) r9: activate(n__d(X)) -> d(X) r10: activate(X) -> X The set of usable rules consists of r1, r2, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(1,1)) x1 f_A(x1) = ((0,1),(1,1)) x1 + (4,0) c#_A(x1) = ((0,1),(0,1)) x1 + (2,3) n__f_A(x1) = ((0,1),(1,1)) x1 + (4,0) n__g_A(x1) = x1 + (1,0) activate#_A(x1) = ((0,1),(0,1)) x1 + (1,3) activate_A(x1) = x1 c_A(x1) = ((1,0),(1,0)) x1 d_A(x1) = (0,0) g_A(x1) = x1 + (1,0) n__d_A(x1) = (0,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (1,2) f_A(x1) = (5,3) c#_A(x1) = (2,0) n__f_A(x1) = (1,1) n__g_A(x1) = (1,1) activate#_A(x1) = (0,1) activate_A(x1) = x1 + (5,2) c_A(x1) = ((0,1),(1,1)) x1 + (3,1) d_A(x1) = (2,1) g_A(x1) = (2,1) n__d_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (1,0) f_A(x1) = (6,4) c#_A(x1) = (2,1) n__f_A(x1) = (4,1) n__g_A(x1) = (1,1) activate#_A(x1) = (0,2) activate_A(x1) = ((1,0),(1,1)) x1 + (2,1) c_A(x1) = (5,4) d_A(x1) = (4,4) g_A(x1) = (2,1) n__d_A(x1) = (1,1) The next rules are strictly ordered: p1, p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__f(X)) -> activate#(X) and R consists of: r1: f(f(X)) -> c(n__f(n__g(n__f(X)))) r2: c(X) -> d(activate(X)) r3: h(X) -> c(n__d(X)) r4: f(X) -> n__f(X) r5: g(X) -> n__g(X) r6: d(X) -> n__d(X) r7: activate(n__f(X)) -> f(activate(X)) r8: activate(n__g(X)) -> g(X) r9: activate(n__d(X)) -> d(X) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__f(X)) -> activate#(X) and R consists of: r1: f(f(X)) -> c(n__f(n__g(n__f(X)))) r2: c(X) -> d(activate(X)) r3: h(X) -> c(n__d(X)) r4: f(X) -> n__f(X) r5: g(X) -> n__g(X) r6: d(X) -> n__d(X) r7: activate(n__f(X)) -> f(activate(X)) r8: activate(n__g(X)) -> g(X) r9: activate(n__d(X)) -> d(X) r10: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,0)) x1 n__f_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(0,1)) x1 n__f_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,1)) x1 n__f_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains.