YES We show the termination of the TRS R: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) active(from(X)) -> mark(cons(X,from(s(X)))) mark(|2nd|(X)) -> active(|2nd|(mark(X))) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) |2nd|(mark(X)) -> |2nd|(X) |2nd|(active(X)) -> |2nd|(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: active#(from(X)) -> mark#(cons(X,from(s(X)))) p3: active#(from(X)) -> cons#(X,from(s(X))) p4: active#(from(X)) -> from#(s(X)) p5: active#(from(X)) -> s#(X) p6: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p7: mark#(|2nd|(X)) -> |2nd|#(mark(X)) p8: mark#(|2nd|(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(from(X)) -> active#(from(mark(X))) p13: mark#(from(X)) -> from#(mark(X)) p14: mark#(from(X)) -> mark#(X) p15: mark#(s(X)) -> active#(s(mark(X))) p16: mark#(s(X)) -> s#(mark(X)) p17: mark#(s(X)) -> mark#(X) p18: |2nd|#(mark(X)) -> |2nd|#(X) p19: |2nd|#(active(X)) -> |2nd|#(X) p20: cons#(mark(X1),X2) -> cons#(X1,X2) p21: cons#(X1,mark(X2)) -> cons#(X1,X2) p22: cons#(active(X1),X2) -> cons#(X1,X2) p23: cons#(X1,active(X2)) -> cons#(X1,X2) p24: from#(mark(X)) -> from#(X) p25: from#(active(X)) -> from#(X) p26: s#(mark(X)) -> s#(X) p27: s#(active(X)) -> s#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p6, p8, p9, p11, p12, p14, p15, p17} {p20, p21, p22, p23} {p24, p25} {p26, p27} {p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(s(X)) -> mark#(X) p3: mark#(s(X)) -> active#(s(mark(X))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(from(X)) -> mark#(X) p6: mark#(from(X)) -> active#(from(mark(X))) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(|2nd|(X)) -> mark#(X) p10: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((0,1),(1,1)) x1 |2nd|_A(x1) = ((1,1),(1,1)) x1 + (1,2) cons_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,1),(0,0)) x2 mark#_A(x1) = ((0,1),(1,1)) x1 + (1,0) s_A(x1) = ((0,0),(1,1)) x1 mark_A(x1) = ((0,0),(1,1)) x1 from_A(x1) = ((1,1),(1,1)) x1 + (0,2) active_A(x1) = ((0,0),(1,1)) x1 2. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = (0,0) |2nd|_A(x1) = (1,0) cons_A(x1,x2) = (1,1) mark#_A(x1) = (1,1) s_A(x1) = (1,1) mark_A(x1) = (1,1) from_A(x1) = (1,1) active_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = (0,0) |2nd|_A(x1) = (1,1) cons_A(x1,x2) = (0,0) mark#_A(x1) = (1,1) s_A(x1) = (0,1) mark_A(x1) = (1,1) from_A(x1) = (1,1) active_A(x1) = (1,1) The next rules are strictly ordered: p1, p3, p4, p5, p6, p8, p9, p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,0)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(mark(X)) -> from#(X) p2: from#(active(X)) -> from#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: from#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: from#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: from#_A(x1) = ((1,1),(0,1)) x1 mark_A(x1) = ((1,0),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: s#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: s#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: s#_A(x1) = ((1,1),(0,1)) x1 mark_A(x1) = ((0,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(mark(X)) -> |2nd|#(X) p2: |2nd|#(active(X)) -> |2nd|#(X) and R consists of: r1: active(|2nd|(cons(X,cons(Y,Z)))) -> mark(Y) r2: active(from(X)) -> mark(cons(X,from(s(X)))) r3: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r4: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(s(X)) -> active(s(mark(X))) r7: |2nd|(mark(X)) -> |2nd|(X) r8: |2nd|(active(X)) -> |2nd|(X) r9: cons(mark(X1),X2) -> cons(X1,X2) r10: cons(X1,mark(X2)) -> cons(X1,X2) r11: cons(active(X1),X2) -> cons(X1,X2) r12: cons(X1,active(X2)) -> cons(X1,X2) r13: from(mark(X)) -> from(X) r14: from(active(X)) -> from(X) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: |2nd|#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: |2nd|#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: |2nd|#_A(x1) = ((1,1),(1,0)) x1 mark_A(x1) = ((1,1),(1,0)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 We remove them from the problem. Then no dependency pair remains.