YES We show the termination of the TRS R: a__2nd(cons(X,cons(Y,Z))) -> mark(Y) a__from(X) -> cons(mark(X),from(s(X))) mark(|2nd|(X)) -> a__2nd(mark(X)) mark(from(X)) -> a__from(mark(X)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(s(X)) -> s(mark(X)) a__2nd(X) -> |2nd|(X) a__from(X) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__2nd#(cons(X,cons(Y,Z))) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: mark#(|2nd|(X)) -> a__2nd#(mark(X)) p4: mark#(|2nd|(X)) -> mark#(X) p5: mark#(from(X)) -> a__from#(mark(X)) p6: mark#(from(X)) -> mark#(X) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(s(X)) -> mark#(X) and R consists of: r1: a__2nd(cons(X,cons(Y,Z))) -> mark(Y) r2: a__from(X) -> cons(mark(X),from(s(X))) r3: mark(|2nd|(X)) -> a__2nd(mark(X)) r4: mark(from(X)) -> a__from(mark(X)) r5: mark(cons(X1,X2)) -> cons(mark(X1),X2) r6: mark(s(X)) -> s(mark(X)) r7: a__2nd(X) -> |2nd|(X) r8: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__2nd#(cons(X,cons(Y,Z))) -> mark#(Y) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> a__from#(mark(X)) p6: a__from#(X) -> mark#(X) p7: mark#(|2nd|(X)) -> mark#(X) p8: mark#(|2nd|(X)) -> a__2nd#(mark(X)) and R consists of: r1: a__2nd(cons(X,cons(Y,Z))) -> mark(Y) r2: a__from(X) -> cons(mark(X),from(s(X))) r3: mark(|2nd|(X)) -> a__2nd(mark(X)) r4: mark(from(X)) -> a__from(mark(X)) r5: mark(cons(X1,X2)) -> cons(mark(X1),X2) r6: mark(s(X)) -> s(mark(X)) r7: a__2nd(X) -> |2nd|(X) r8: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a__2nd#_A(x1) = ((0,1),(0,0)) x1 cons_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (2,0) mark#_A(x1) = ((0,1),(0,0)) x1 + (1,0) s_A(x1) = x1 + (1,1) from_A(x1) = x1 a__from#_A(x1) = ((0,1),(0,0)) x1 + (1,0) mark_A(x1) = ((0,1),(0,1)) x1 + (4,0) |2nd|_A(x1) = x1 + (1,0) a__2nd_A(x1) = ((0,1),(0,1)) x1 + (3,0) a__from_A(x1) = ((0,1),(0,1)) x1 + (3,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a__2nd#_A(x1) = (0,0) cons_A(x1,x2) = ((1,1),(1,0)) x2 mark#_A(x1) = (1,1) s_A(x1) = (1,0) from_A(x1) = (3,3) a__from#_A(x1) = (1,1) mark_A(x1) = (0,1) |2nd|_A(x1) = (2,3) a__2nd_A(x1) = (1,2) a__from_A(x1) = (2,2) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: a__2nd#_A(x1) = (1,1) cons_A(x1,x2) = (1,3) mark#_A(x1) = (0,0) s_A(x1) = (3,2) from_A(x1) = (0,0) a__from#_A(x1) = (0,0) mark_A(x1) = (2,1) |2nd|_A(x1) = (4,3) a__2nd_A(x1) = (3,2) a__from_A(x1) = (3,2) The next rules are strictly ordered: p1, p2, p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(from(X)) -> mark#(X) p3: mark#(from(X)) -> a__from#(mark(X)) p4: a__from#(X) -> mark#(X) p5: mark#(|2nd|(X)) -> mark#(X) and R consists of: r1: a__2nd(cons(X,cons(Y,Z))) -> mark(Y) r2: a__from(X) -> cons(mark(X),from(s(X))) r3: mark(|2nd|(X)) -> a__2nd(mark(X)) r4: mark(from(X)) -> a__from(mark(X)) r5: mark(cons(X1,X2)) -> cons(mark(X1),X2) r6: mark(s(X)) -> s(mark(X)) r7: a__2nd(X) -> |2nd|(X) r8: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(|2nd|(X)) -> mark#(X) p3: mark#(from(X)) -> a__from#(mark(X)) p4: a__from#(X) -> mark#(X) p5: mark#(from(X)) -> mark#(X) and R consists of: r1: a__2nd(cons(X,cons(Y,Z))) -> mark(Y) r2: a__from(X) -> cons(mark(X),from(s(X))) r3: mark(|2nd|(X)) -> a__2nd(mark(X)) r4: mark(from(X)) -> a__from(mark(X)) r5: mark(cons(X1,X2)) -> cons(mark(X1),X2) r6: mark(s(X)) -> s(mark(X)) r7: a__2nd(X) -> |2nd|(X) r8: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = x1 cons_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (0,1) |2nd|_A(x1) = x1 + (1,1) from_A(x1) = x1 + (2,0) a__from#_A(x1) = x1 + (1,0) mark_A(x1) = x1 + (0,1) a__2nd_A(x1) = x1 + (1,1) a__from_A(x1) = x1 + (2,1) s_A(x1) = (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = x1 + ((0,1),(1,0)) x2 + (1,1) |2nd|_A(x1) = ((0,1),(1,0)) x1 + (1,2) from_A(x1) = ((1,1),(1,1)) x1 + (7,5) a__from#_A(x1) = ((1,1),(1,1)) x1 + (1,0) mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) a__2nd_A(x1) = ((0,1),(1,0)) x1 + (2,2) a__from_A(x1) = ((1,1),(1,1)) x1 + (10,11) s_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(0,1)) x1 + (1,1) |2nd|_A(x1) = (1,1) from_A(x1) = x1 + (1,1) a__from#_A(x1) = ((1,1),(1,1)) x1 + (2,2) mark_A(x1) = ((1,1),(0,0)) x1 + (1,0) a__2nd_A(x1) = (4,1) a__from_A(x1) = (0,0) s_A(x1) = (1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.