YES We show the termination of the TRS R: a__f(X,X) -> a__f(a(),b()) a__b() -> a() mark(f(X1,X2)) -> a__f(mark(X1),X2) mark(b()) -> a__b() mark(a()) -> a() a__f(X1,X2) -> f(X1,X2) a__b() -> b() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X,X) -> a__f#(a(),b()) p2: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) p3: mark#(f(X1,X2)) -> mark#(X1) p4: mark#(b()) -> a__b#() and R consists of: r1: a__f(X,X) -> a__f(a(),b()) r2: a__b() -> a() r3: mark(f(X1,X2)) -> a__f(mark(X1),X2) r4: mark(b()) -> a__b() r5: mark(a()) -> a() r6: a__f(X1,X2) -> f(X1,X2) r7: a__b() -> b() The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X1,X2)) -> mark#(X1) and R consists of: r1: a__f(X,X) -> a__f(a(),b()) r2: a__b() -> a() r3: mark(f(X1,X2)) -> a__f(mark(X1),X2) r4: mark(b()) -> a__b() r5: mark(a()) -> a() r6: a__f(X1,X2) -> f(X1,X2) r7: a__b() -> b() The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 f_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,1)) x1 f_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 f_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7 We remove them from the problem. Then no dependency pair remains.