YES We show the termination of the TRS R: f_0(x) -> a() f_1(x) -> g_1(x,x) g_1(s(x),y) -> b(f_0(y),g_1(x,y)) f_2(x) -> g_2(x,x) g_2(s(x),y) -> b(f_1(y),g_2(x,y)) f_3(x) -> g_3(x,x) g_3(s(x),y) -> b(f_2(y),g_3(x,y)) f_4(x) -> g_4(x,x) g_4(s(x),y) -> b(f_3(y),g_4(x,y)) f_5(x) -> g_5(x,x) g_5(s(x),y) -> b(f_4(y),g_5(x,y)) f_6(x) -> g_6(x,x) g_6(s(x),y) -> b(f_5(y),g_6(x,y)) f_7(x) -> g_7(x,x) g_7(s(x),y) -> b(f_6(y),g_7(x,y)) f_8(x) -> g_8(x,x) g_8(s(x),y) -> b(f_7(y),g_8(x,y)) f_9(x) -> g_9(x,x) g_9(s(x),y) -> b(f_8(y),g_9(x,y)) f_10(x) -> g_10(x,x) g_10(s(x),y) -> b(f_9(y),g_10(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f_1#(x) -> g_1#(x,x) p2: g_1#(s(x),y) -> f_0#(y) p3: g_1#(s(x),y) -> g_1#(x,y) p4: f_2#(x) -> g_2#(x,x) p5: g_2#(s(x),y) -> f_1#(y) p6: g_2#(s(x),y) -> g_2#(x,y) p7: f_3#(x) -> g_3#(x,x) p8: g_3#(s(x),y) -> f_2#(y) p9: g_3#(s(x),y) -> g_3#(x,y) p10: f_4#(x) -> g_4#(x,x) p11: g_4#(s(x),y) -> f_3#(y) p12: g_4#(s(x),y) -> g_4#(x,y) p13: f_5#(x) -> g_5#(x,x) p14: g_5#(s(x),y) -> f_4#(y) p15: g_5#(s(x),y) -> g_5#(x,y) p16: f_6#(x) -> g_6#(x,x) p17: g_6#(s(x),y) -> f_5#(y) p18: g_6#(s(x),y) -> g_6#(x,y) p19: f_7#(x) -> g_7#(x,x) p20: g_7#(s(x),y) -> f_6#(y) p21: g_7#(s(x),y) -> g_7#(x,y) p22: f_8#(x) -> g_8#(x,x) p23: g_8#(s(x),y) -> f_7#(y) p24: g_8#(s(x),y) -> g_8#(x,y) p25: f_9#(x) -> g_9#(x,x) p26: g_9#(s(x),y) -> f_8#(y) p27: g_9#(s(x),y) -> g_9#(x,y) p28: f_10#(x) -> g_10#(x,x) p29: g_10#(s(x),y) -> f_9#(y) p30: g_10#(s(x),y) -> g_10#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The estimated dependency graph contains the following SCCs: {p30} {p27} {p24} {p21} {p18} {p15} {p12} {p9} {p6} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_10#(s(x),y) -> g_10#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_10#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_10#_A(x1,x2) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_10#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_9#(s(x),y) -> g_9#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_9#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_9#_A(x1,x2) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_9#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_8#(s(x),y) -> g_8#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_8#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_8#_A(x1,x2) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_8#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_7#(s(x),y) -> g_7#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_7#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_7#_A(x1,x2) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_7#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_6#(s(x),y) -> g_6#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_6#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_6#_A(x1,x2) = ((1,1),(0,1)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_6#_A(x1,x2) = ((0,0),(1,0)) x1 s_A(x1) = ((1,1),(0,0)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_5#(s(x),y) -> g_5#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_5#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_5#_A(x1,x2) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_5#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_4#(s(x),y) -> g_4#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_4#_A(x1,x2) = ((1,1),(1,0)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_4#_A(x1,x2) = ((1,1),(0,1)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_4#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_3#(s(x),y) -> g_3#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_3#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_3#_A(x1,x2) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_3#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_2#(s(x),y) -> g_2#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_2#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_2#_A(x1,x2) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_2#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g_1#(s(x),y) -> g_1#(x,y) and R consists of: r1: f_0(x) -> a() r2: f_1(x) -> g_1(x,x) r3: g_1(s(x),y) -> b(f_0(y),g_1(x,y)) r4: f_2(x) -> g_2(x,x) r5: g_2(s(x),y) -> b(f_1(y),g_2(x,y)) r6: f_3(x) -> g_3(x,x) r7: g_3(s(x),y) -> b(f_2(y),g_3(x,y)) r8: f_4(x) -> g_4(x,x) r9: g_4(s(x),y) -> b(f_3(y),g_4(x,y)) r10: f_5(x) -> g_5(x,x) r11: g_5(s(x),y) -> b(f_4(y),g_5(x,y)) r12: f_6(x) -> g_6(x,x) r13: g_6(s(x),y) -> b(f_5(y),g_6(x,y)) r14: f_7(x) -> g_7(x,x) r15: g_7(s(x),y) -> b(f_6(y),g_7(x,y)) r16: f_8(x) -> g_8(x,x) r17: g_8(s(x),y) -> b(f_7(y),g_8(x,y)) r18: f_9(x) -> g_9(x,x) r19: g_9(s(x),y) -> b(f_8(y),g_9(x,y)) r20: f_10(x) -> g_10(x,x) r21: g_10(s(x),y) -> b(f_9(y),g_10(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g_1#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g_1#_A(x1,x2) = x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g_1#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.