YES We show the termination of the TRS R: f(g(x),g(y)) -> f(p(f(g(x),s(y))),g(s(p(x)))) p(|0|()) -> g(|0|()) g(s(p(x))) -> p(x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(g(x),g(y)) -> f#(p(f(g(x),s(y))),g(s(p(x)))) p2: f#(g(x),g(y)) -> p#(f(g(x),s(y))) p3: f#(g(x),g(y)) -> f#(g(x),s(y)) p4: f#(g(x),g(y)) -> g#(s(p(x))) p5: f#(g(x),g(y)) -> p#(x) p6: p#(|0|()) -> g#(|0|()) and R consists of: r1: f(g(x),g(y)) -> f(p(f(g(x),s(y))),g(s(p(x)))) r2: p(|0|()) -> g(|0|()) r3: g(s(p(x))) -> p(x) The estimated dependency graph contains the following SCCs: (no SCCs)