YES We show the termination of the TRS R: f(s(X)) -> f(X) g(cons(|0|(),Y)) -> g(Y) g(cons(s(X),Y)) -> s(X) h(cons(X,Y)) -> h(g(cons(X,Y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(X)) -> f#(X) p2: g#(cons(|0|(),Y)) -> g#(Y) p3: h#(cons(X,Y)) -> h#(g(cons(X,Y))) p4: h#(cons(X,Y)) -> g#(cons(X,Y)) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The estimated dependency graph contains the following SCCs: {p1} {p3} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(X)) -> f#(X) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(1,0)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(0,0)) x1 s_A(x1) = ((0,1),(0,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (0,0) s_A(x1) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(cons(X,Y)) -> h#(g(cons(X,Y))) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1) = x1 cons_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) g_A(x1) = ((1,0),(1,0)) x1 |0|_A() = (1,1) s_A(x1) = ((0,0),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1) = ((1,1),(0,1)) x1 cons_A(x1,x2) = ((1,0),(1,0)) x2 + (1,2) g_A(x1) = ((1,0),(1,0)) x1 |0|_A() = (0,1) s_A(x1) = (0,2) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1) = ((0,0),(1,0)) x1 cons_A(x1,x2) = ((0,1),(0,1)) x2 + (1,1) g_A(x1) = ((1,1),(1,1)) x1 |0|_A() = (1,1) s_A(x1) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(cons(|0|(),Y)) -> g#(Y) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((0,1),(1,0)) x1 cons_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,1),(0,1)) x2 |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = (0,0) cons_A(x1,x2) = ((1,1),(0,1)) x1 |0|_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = (0,0) cons_A(x1,x2) = (1,1) |0|_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.