YES We show the termination of the TRS R: even(|0|()) -> true() even(s(|0|())) -> false() even(s(s(x))) -> even(x) half(|0|()) -> |0|() half(s(s(x))) -> s(half(x)) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(|0|(),y) -> |0|() times(s(x),y) -> if_times(even(s(x)),s(x),y) if_times(true(),s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) if_times(false(),s(x),y) -> plus(y,times(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: even#(s(s(x))) -> even#(x) p2: half#(s(s(x))) -> half#(x) p3: plus#(s(x),y) -> plus#(x,y) p4: times#(s(x),y) -> if_times#(even(s(x)),s(x),y) p5: times#(s(x),y) -> even#(s(x)) p6: if_times#(true(),s(x),y) -> plus#(times(half(s(x)),y),times(half(s(x)),y)) p7: if_times#(true(),s(x),y) -> times#(half(s(x)),y) p8: if_times#(true(),s(x),y) -> half#(s(x)) p9: if_times#(false(),s(x),y) -> plus#(y,times(x,y)) p10: if_times#(false(),s(x),y) -> times#(x,y) and R consists of: r1: even(|0|()) -> true() r2: even(s(|0|())) -> false() r3: even(s(s(x))) -> even(x) r4: half(|0|()) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: plus(|0|(),y) -> y r7: plus(s(x),y) -> s(plus(x,y)) r8: times(|0|(),y) -> |0|() r9: times(s(x),y) -> if_times(even(s(x)),s(x),y) r10: if_times(true(),s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) r11: if_times(false(),s(x),y) -> plus(y,times(x,y)) The estimated dependency graph contains the following SCCs: {p4, p7, p10} {p1} {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_times#(false(),s(x),y) -> times#(x,y) p2: times#(s(x),y) -> if_times#(even(s(x)),s(x),y) p3: if_times#(true(),s(x),y) -> times#(half(s(x)),y) and R consists of: r1: even(|0|()) -> true() r2: even(s(|0|())) -> false() r3: even(s(s(x))) -> even(x) r4: half(|0|()) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: plus(|0|(),y) -> y r7: plus(s(x),y) -> s(plus(x,y)) r8: times(|0|(),y) -> |0|() r9: times(s(x),y) -> if_times(even(s(x)),s(x),y) r10: if_times(true(),s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) r11: if_times(false(),s(x),y) -> plus(y,times(x,y)) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: if_times#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + x2 false_A() = (2,0) s_A(x1) = x1 + (2,0) times#_A(x1,x2) = x1 + (1,0) even_A(x1) = x1 + (0,1) true_A() = (0,1) half_A(x1) = x1 + (0,1) |0|_A() = (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: if_times#_A(x1,x2,x3) = x2 + (3,0) false_A() = (1,1) s_A(x1) = ((0,1),(0,0)) x1 + (1,4) times#_A(x1,x2) = ((1,1),(0,0)) x1 + (0,4) even_A(x1) = (2,1) true_A() = (1,1) half_A(x1) = ((0,0),(1,0)) x1 + (2,0) |0|_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: if_times#_A(x1,x2,x3) = ((1,1),(1,1)) x2 false_A() = (3,2) s_A(x1) = (2,1) times#_A(x1,x2) = ((1,1),(0,0)) x1 + (1,3) even_A(x1) = (2,1) true_A() = (1,1) half_A(x1) = (0,1) |0|_A() = (0,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: even#(s(s(x))) -> even#(x) and R consists of: r1: even(|0|()) -> true() r2: even(s(|0|())) -> false() r3: even(s(s(x))) -> even(x) r4: half(|0|()) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: plus(|0|(),y) -> y r7: plus(s(x),y) -> s(plus(x,y)) r8: times(|0|(),y) -> |0|() r9: times(s(x),y) -> if_times(even(s(x)),s(x),y) r10: if_times(true(),s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) r11: if_times(false(),s(x),y) -> plus(y,times(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: even#_A(x1) = ((1,0),(1,0)) x1 s_A(x1) = x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: even#_A(x1) = ((1,0),(1,0)) x1 s_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: even#_A(x1) = (0,0) s_A(x1) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) and R consists of: r1: even(|0|()) -> true() r2: even(s(|0|())) -> false() r3: even(s(s(x))) -> even(x) r4: half(|0|()) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: plus(|0|(),y) -> y r7: plus(s(x),y) -> s(plus(x,y)) r8: times(|0|(),y) -> |0|() r9: times(s(x),y) -> if_times(even(s(x)),s(x),y) r10: if_times(true(),s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) r11: if_times(false(),s(x),y) -> plus(y,times(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: half#_A(x1) = x1 s_A(x1) = x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: half#_A(x1) = ((0,1),(0,0)) x1 s_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: half#_A(x1) = (0,0) s_A(x1) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: even(|0|()) -> true() r2: even(s(|0|())) -> false() r3: even(s(s(x))) -> even(x) r4: half(|0|()) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: plus(|0|(),y) -> y r7: plus(s(x),y) -> s(plus(x,y)) r8: times(|0|(),y) -> |0|() r9: times(s(x),y) -> if_times(even(s(x)),s(x),y) r10: if_times(true(),s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) r11: if_times(false(),s(x),y) -> plus(y,times(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((1,1),(0,1)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((0,0),(1,0)) x1 s_A(x1) = ((1,1),(0,0)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.