YES We show the termination of the TRS R: -(x,|0|()) -> x -(s(x),s(y)) -> -(x,y) p(s(x)) -> x f(s(x),y) -> f(p(-(s(x),y)),p(-(y,s(x)))) f(x,s(y)) -> f(p(-(x,s(y))),p(-(s(y),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) p2: f#(s(x),y) -> f#(p(-(s(x),y)),p(-(y,s(x)))) p3: f#(s(x),y) -> p#(-(s(x),y)) p4: f#(s(x),y) -> -#(s(x),y) p5: f#(s(x),y) -> p#(-(y,s(x))) p6: f#(s(x),y) -> -#(y,s(x)) p7: f#(x,s(y)) -> f#(p(-(x,s(y))),p(-(s(y),x))) p8: f#(x,s(y)) -> p#(-(x,s(y))) p9: f#(x,s(y)) -> -#(x,s(y)) p10: f#(x,s(y)) -> p#(-(s(y),x)) p11: f#(x,s(y)) -> -#(s(y),x) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: p(s(x)) -> x r4: f(s(x),y) -> f(p(-(s(x),y)),p(-(y,s(x)))) r5: f(x,s(y)) -> f(p(-(x,s(y))),p(-(s(y),x))) The estimated dependency graph contains the following SCCs: {p2, p7} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,s(y)) -> f#(p(-(x,s(y))),p(-(s(y),x))) p2: f#(s(x),y) -> f#(p(-(s(x),y)),p(-(y,s(x)))) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: p(s(x)) -> x r4: f(s(x),y) -> f(p(-(s(x),y)),p(-(y,s(x)))) r5: f(x,s(y)) -> f(p(-(x,s(y))),p(-(s(y),x))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(0,0)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) p_A(x1) = ((0,1),(1,0)) x1 -_A(x1,x2) = x1 |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = x2 s_A(x1) = ((1,1),(1,0)) x1 + (1,1) p_A(x1) = (0,1) -_A(x1,x2) = ((1,1),(0,1)) x1 + (1,1) |0|_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = (0,0) s_A(x1) = ((1,0),(1,0)) x1 + (1,1) p_A(x1) = (1,1) -_A(x1,x2) = ((1,0),(1,1)) x1 + (1,1) |0|_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),y) -> f#(p(-(s(x),y)),p(-(y,s(x)))) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: p(s(x)) -> x r4: f(s(x),y) -> f(p(-(s(x),y)),p(-(y,s(x)))) r5: f(x,s(y)) -> f(p(-(x,s(y))),p(-(s(y),x))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),y) -> f#(p(-(s(x),y)),p(-(y,s(x)))) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: p(s(x)) -> x r4: f(s(x),y) -> f(p(-(s(x),y)),p(-(y,s(x)))) r5: f(x,s(y)) -> f(p(-(x,s(y))),p(-(s(y),x))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(0,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,3) p_A(x1) = ((0,1),(1,0)) x1 -_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,0) |0|_A() = (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = (0,0) s_A(x1) = ((1,1),(0,0)) x1 + (1,1) p_A(x1) = (1,0) -_A(x1,x2) = x1 + (0,1) |0|_A() = (0,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = (0,0) s_A(x1) = x1 + (1,1) p_A(x1) = (0,0) -_A(x1,x2) = ((0,0),(1,0)) x1 + (1,0) |0|_A() = (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: p(s(x)) -> x r4: f(s(x),y) -> f(p(-(s(x),y)),p(-(y,s(x)))) r5: f(x,s(y)) -> f(p(-(x,s(y))),p(-(s(y),x))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((1,0),(1,1)) x1 s_A(x1) = ((1,1),(0,1)) x1 + (0,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((1,0),(1,1)) x1 s_A(x1) = ((1,1),(1,0)) x1 + (0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.