YES We show the termination of the TRS R: f(f(x,a()),y) -> f(f(a(),y),f(a(),x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x,a()),y) -> f#(f(a(),y),f(a(),x)) p2: f#(f(x,a()),y) -> f#(a(),y) p3: f#(f(x,a()),y) -> f#(a(),x) and R consists of: r1: f(f(x,a()),y) -> f(f(a(),y),f(a(),x)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x,a()),y) -> f#(f(a(),y),f(a(),x)) and R consists of: r1: f(f(x,a()),y) -> f(f(a(),y),f(a(),x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(0,0)) x1 + x2 f_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (0,1) a_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(0,1)) x2 f_A(x1,x2) = ((0,1),(0,0)) x2 + (1,1) a_A() = (1,2) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = (0,0) f_A(x1,x2) = (1,1) a_A() = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.