YES We show the termination of the TRS R: f(x,x) -> a() f(g(x),y) -> f(x,y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(g(x),y) -> f#(x,y) and R consists of: r1: f(x,x) -> a() r2: f(g(x),y) -> f(x,y) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(g(x),y) -> f#(x,y) and R consists of: r1: f(x,x) -> a() r2: f(g(x),y) -> f(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.