YES We show the termination of the TRS R: +(x,|0|()) -> x +(x,s(y)) -> s(+(x,y)) +(|0|(),y) -> y +(s(x),y) -> s(+(x,y)) +(x,+(y,z)) -> +(+(x,y),z) f(g(f(x))) -> f(h(s(|0|()),x)) f(g(h(x,y))) -> f(h(s(x),y)) f(h(x,h(y,z))) -> f(h(+(x,y),z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(x,s(y)) -> +#(x,y) p2: +#(s(x),y) -> +#(x,y) p3: +#(x,+(y,z)) -> +#(+(x,y),z) p4: +#(x,+(y,z)) -> +#(x,y) p5: f#(g(f(x))) -> f#(h(s(|0|()),x)) p6: f#(g(h(x,y))) -> f#(h(s(x),y)) p7: f#(h(x,h(y,z))) -> f#(h(+(x,y),z)) p8: f#(h(x,h(y,z))) -> +#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(x,s(y)) -> s(+(x,y)) r3: +(|0|(),y) -> y r4: +(s(x),y) -> s(+(x,y)) r5: +(x,+(y,z)) -> +(+(x,y),z) r6: f(g(f(x))) -> f(h(s(|0|()),x)) r7: f(g(h(x,y))) -> f(h(s(x),y)) r8: f(h(x,h(y,z))) -> f(h(+(x,y),z)) The estimated dependency graph contains the following SCCs: {p7} {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(h(x,h(y,z))) -> f#(h(+(x,y),z)) and R consists of: r1: +(x,|0|()) -> x r2: +(x,s(y)) -> s(+(x,y)) r3: +(|0|(),y) -> y r4: +(s(x),y) -> s(+(x,y)) r5: +(x,+(y,z)) -> +(+(x,y),z) r6: f(g(f(x))) -> f(h(s(|0|()),x)) r7: f(g(h(x,y))) -> f(h(s(x),y)) r8: f(h(x,h(y,z))) -> f(h(+(x,y),z)) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(0,0)) x1 h_A(x1,x2) = x1 + x2 + (1,1) +_A(x1,x2) = x1 + x2 + (1,1) |0|_A() = (1,1) s_A(x1) = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(0,0)) x1 h_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (1,1) +_A(x1,x2) = x1 + x2 + (1,1) |0|_A() = (1,1) s_A(x1) = (1,2) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = x1 h_A(x1,x2) = ((0,1),(1,0)) x1 + x2 + (1,3) +_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (3,2) |0|_A() = (1,1) s_A(x1) = (7,3) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(x,s(y)) -> +#(x,y) p2: +#(x,+(y,z)) -> +#(x,y) p3: +#(x,+(y,z)) -> +#(+(x,y),z) p4: +#(s(x),y) -> +#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(x,s(y)) -> s(+(x,y)) r3: +(|0|(),y) -> y r4: +(s(x),y) -> s(+(x,y)) r5: +(x,+(y,z)) -> +(+(x,y),z) r6: f(g(f(x))) -> f(h(s(|0|()),x)) r7: f(g(h(x,y))) -> f(h(s(x),y)) r8: f(h(x,h(y,z))) -> f(h(+(x,y),z)) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 s_A(x1) = x1 + (1,0) +_A(x1,x2) = x1 + x2 + (1,1) |0|_A() = (0,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = x1 + ((1,1),(1,0)) x2 s_A(x1) = x1 + (1,1) +_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) |0|_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 s_A(x1) = x1 + (1,1) +_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (2,1) |0|_A() = (1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.