YES We show the termination of the TRS R: and(x,or(y,z)) -> or(and(x,y),and(x,z)) and(x,and(y,y)) -> and(x,y) or(or(x,y),and(y,z)) -> or(x,y) or(x,and(x,y)) -> x or(true(),y) -> true() or(x,false()) -> x or(x,x) -> x or(x,or(y,y)) -> or(x,y) and(x,true()) -> x and(false(),y) -> false() and(x,x) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(x,or(y,z)) -> or#(and(x,y),and(x,z)) p2: and#(x,or(y,z)) -> and#(x,y) p3: and#(x,or(y,z)) -> and#(x,z) p4: and#(x,and(y,y)) -> and#(x,y) p5: or#(x,or(y,y)) -> or#(x,y) and R consists of: r1: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r2: and(x,and(y,y)) -> and(x,y) r3: or(or(x,y),and(y,z)) -> or(x,y) r4: or(x,and(x,y)) -> x r5: or(true(),y) -> true() r6: or(x,false()) -> x r7: or(x,x) -> x r8: or(x,or(y,y)) -> or(x,y) r9: and(x,true()) -> x r10: and(false(),y) -> false() r11: and(x,x) -> x The estimated dependency graph contains the following SCCs: {p2, p3, p4} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(x,and(y,y)) -> and#(x,y) p2: and#(x,or(y,z)) -> and#(x,z) p3: and#(x,or(y,z)) -> and#(x,y) and R consists of: r1: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r2: and(x,and(y,y)) -> and(x,y) r3: or(or(x,y),and(y,z)) -> or(x,y) r4: or(x,and(x,y)) -> x r5: or(true(),y) -> true() r6: or(x,false()) -> x r7: or(x,x) -> x r8: or(x,or(y,y)) -> or(x,y) r9: and(x,true()) -> x r10: and(false(),y) -> false() r11: and(x,x) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: and#_A(x1,x2) = ((1,1),(0,0)) x2 and_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) or_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: and#_A(x1,x2) = ((0,1),(0,0)) x2 and_A(x1,x2) = x1 + x2 + (1,1) or_A(x1,x2) = ((0,1),(0,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: and#_A(x1,x2) = (0,0) and_A(x1,x2) = ((1,1),(1,0)) x2 + (1,1) or_A(x1,x2) = (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: or#(x,or(y,y)) -> or#(x,y) and R consists of: r1: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r2: and(x,and(y,y)) -> and(x,y) r3: or(or(x,y),and(y,z)) -> or(x,y) r4: or(x,and(x,y)) -> x r5: or(true(),y) -> true() r6: or(x,false()) -> x r7: or(x,x) -> x r8: or(x,or(y,y)) -> or(x,y) r9: and(x,true()) -> x r10: and(false(),y) -> false() r11: and(x,x) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: or#_A(x1,x2) = ((1,0),(1,0)) x2 or_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: or#_A(x1,x2) = ((1,1),(1,0)) x2 or_A(x1,x2) = ((1,0),(1,0)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: or#_A(x1,x2) = x2 or_A(x1,x2) = ((1,1),(1,0)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.