YES We show the termination of the TRS R: +(x,|0|()) -> x +(x,i(x)) -> |0|() +(+(x,y),z) -> +(x,+(y,z)) *(x,+(y,z)) -> +(*(x,y),*(x,z)) *(+(x,y),z) -> +(*(x,z),*(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(+(x,y),z) -> +#(x,+(y,z)) p2: +#(+(x,y),z) -> +#(y,z) p3: *#(x,+(y,z)) -> +#(*(x,y),*(x,z)) p4: *#(x,+(y,z)) -> *#(x,y) p5: *#(x,+(y,z)) -> *#(x,z) p6: *#(+(x,y),z) -> +#(*(x,z),*(y,z)) p7: *#(+(x,y),z) -> *#(x,z) p8: *#(+(x,y),z) -> *#(y,z) and R consists of: r1: +(x,|0|()) -> x r2: +(x,i(x)) -> |0|() r3: +(+(x,y),z) -> +(x,+(y,z)) r4: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r5: *(+(x,y),z) -> +(*(x,z),*(y,z)) The estimated dependency graph contains the following SCCs: {p4, p5, p7, p8} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(+(x,y),z) -> *#(y,z) p2: *#(+(x,y),z) -> *#(x,z) p3: *#(x,+(y,z)) -> *#(x,z) p4: *#(x,+(y,z)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(x,i(x)) -> |0|() r3: +(+(x,y),z) -> +(x,+(y,z)) r4: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r5: *(+(x,y),z) -> +(*(x,z),*(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 +_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,0),(1,1)) x2 +_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((1,1),(1,1)) x2 +_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(+(x,y),z) -> +#(x,+(y,z)) p2: +#(+(x,y),z) -> +#(y,z) and R consists of: r1: +(x,|0|()) -> x r2: +(x,i(x)) -> |0|() r3: +(+(x,y),z) -> +(x,+(y,z)) r4: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r5: *(+(x,y),z) -> +(*(x,z),*(y,z)) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 +_A(x1,x2) = x1 + x2 + (1,1) |0|_A() = (1,1) i_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,1),(1,0)) x1 +_A(x1,x2) = ((1,0),(1,1)) x1 + (2,1) |0|_A() = (1,2) i_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = x1 +_A(x1,x2) = ((1,1),(1,1)) x1 + (2,1) |0|_A() = (1,0) i_A(x1) = (1,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.