YES We show the termination of the TRS R: +(*(x,y),*(a(),y)) -> *(+(x,a()),y) *(*(x,y),z) -> *(x,*(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(*(x,y),*(a(),y)) -> *#(+(x,a()),y) p2: +#(*(x,y),*(a(),y)) -> +#(x,a()) p3: *#(*(x,y),z) -> *#(x,*(y,z)) p4: *#(*(x,y),z) -> *#(y,z) and R consists of: r1: +(*(x,y),*(a(),y)) -> *(+(x,a()),y) r2: *(*(x,y),z) -> *(x,*(y,z)) The estimated dependency graph contains the following SCCs: {p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(*(x,y),z) -> *#(x,*(y,z)) p2: *#(*(x,y),z) -> *#(y,z) and R consists of: r1: +(*(x,y),*(a(),y)) -> *(+(x,a()),y) r2: *(*(x,y),z) -> *(x,*(y,z)) The set of usable rules consists of r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((1,1),(0,0)) x1 + x2 *_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,1)) x2 *_A(x1,x2) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((0,1),(0,0)) x1 + x2 *_A(x1,x2) = (2,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.