YES We show the termination of the TRS R: admit(x,nil()) -> nil() admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) cond(true(),y) -> y -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: admit#(x,.(u,.(v,.(w(),z)))) -> cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) p2: admit#(x,.(u,.(v,.(w(),z)))) -> admit#(carry(x,u,v),z) and R consists of: r1: admit(x,nil()) -> nil() r2: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) r3: cond(true(),y) -> y The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: admit#(x,.(u,.(v,.(w(),z)))) -> admit#(carry(x,u,v),z) and R consists of: r1: admit(x,nil()) -> nil() r2: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) r3: cond(true(),y) -> y The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: admit#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 ._A(x1,x2) = x1 + ((1,1),(0,1)) x2 + (1,0) w_A() = (3,0) carry_A(x1,x2,x3) = x1 + ((0,0),(1,0)) x2 + ((0,1),(1,1)) x3 + (1,3) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: admit#_A(x1,x2) = ((1,0),(1,0)) x2 ._A(x1,x2) = ((1,1),(1,0)) x1 + ((1,1),(0,0)) x2 + (0,1) w_A() = (1,1) carry_A(x1,x2,x3) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: admit#_A(x1,x2) = ((0,1),(0,0)) x2 ._A(x1,x2) = ((0,0),(1,0)) x1 + (1,0) w_A() = (0,1) carry_A(x1,x2,x3) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.