YES We show the termination of the TRS R: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) f(true(),x,y,z) -> del(.(y,z)) f(false(),x,y,z) -> .(x,del(.(y,z))) =(nil(),nil()) -> true() =(.(x,y),nil()) -> false() =(nil(),.(y,z)) -> false() =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: del#(.(x,.(y,z))) -> f#(=(x,y),x,y,z) p2: del#(.(x,.(y,z))) -> =#(x,y) p3: f#(true(),x,y,z) -> del#(.(y,z)) p4: f#(false(),x,y,z) -> del#(.(y,z)) p5: =#(.(x,y),.(u(),v())) -> =#(x,u()) p6: =#(.(x,y),.(u(),v())) -> =#(y,v()) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The estimated dependency graph contains the following SCCs: {p1, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: del#(.(x,.(y,z))) -> f#(=(x,y),x,y,z) p2: f#(false(),x,y,z) -> del#(.(y,z)) p3: f#(true(),x,y,z) -> del#(.(y,z)) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The set of usable rules consists of r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: del#_A(x1) = ((0,1),(0,0)) x1 ._A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (2,1) f#_A(x1,x2,x3,x4) = ((0,1),(0,0)) x1 + x2 + ((1,1),(0,0)) x3 + ((1,1),(0,0)) x4 + (1,0) =_A(x1,x2) = x2 + (0,1) false_A() = (1,1) true_A() = (1,1) nil_A() = (2,1) u_A() = (1,1) v_A() = (1,1) and_A(x1,x2) = (0,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: del#_A(x1) = (0,0) ._A(x1,x2) = (1,1) f#_A(x1,x2,x3,x4) = x2 + ((1,0),(1,0)) x3 + ((1,1),(0,1)) x4 + (0,1) =_A(x1,x2) = ((0,0),(1,0)) x2 + (2,1) false_A() = (3,3) true_A() = (1,3) nil_A() = (1,1) u_A() = (1,1) v_A() = (0,1) and_A(x1,x2) = (0,3) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: del#_A(x1) = (0,1) ._A(x1,x2) = (1,1) f#_A(x1,x2,x3,x4) = x2 + ((0,1),(0,0)) x3 + ((1,1),(0,0)) x4 + (1,0) =_A(x1,x2) = (1,1) false_A() = (2,2) true_A() = (2,2) nil_A() = (1,1) u_A() = (0,1) v_A() = (0,1) and_A(x1,x2) = (2,2) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.