YES We show the termination of the TRS R: fib(|0|()) -> |0|() fib(s(|0|())) -> s(|0|()) fib(s(s(|0|()))) -> s(|0|()) fib(s(s(x))) -> sp(g(x)) g(|0|()) -> pair(s(|0|()),|0|()) g(s(|0|())) -> pair(s(|0|()),s(|0|())) g(s(x)) -> np(g(x)) sp(pair(x,y)) -> +(x,y) np(pair(x,y)) -> pair(+(x,y),x) +(x,|0|()) -> x +(x,s(y)) -> s(+(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fib#(s(s(x))) -> sp#(g(x)) p2: fib#(s(s(x))) -> g#(x) p3: g#(s(x)) -> np#(g(x)) p4: g#(s(x)) -> g#(x) p5: sp#(pair(x,y)) -> +#(x,y) p6: np#(pair(x,y)) -> +#(x,y) p7: +#(x,s(y)) -> +#(x,y) and R consists of: r1: fib(|0|()) -> |0|() r2: fib(s(|0|())) -> s(|0|()) r3: fib(s(s(|0|()))) -> s(|0|()) r4: fib(s(s(x))) -> sp(g(x)) r5: g(|0|()) -> pair(s(|0|()),|0|()) r6: g(s(|0|())) -> pair(s(|0|()),s(|0|())) r7: g(s(x)) -> np(g(x)) r8: sp(pair(x,y)) -> +(x,y) r9: np(pair(x,y)) -> pair(+(x,y),x) r10: +(x,|0|()) -> x r11: +(x,s(y)) -> s(+(x,y)) The estimated dependency graph contains the following SCCs: {p4} {p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x)) -> g#(x) and R consists of: r1: fib(|0|()) -> |0|() r2: fib(s(|0|())) -> s(|0|()) r3: fib(s(s(|0|()))) -> s(|0|()) r4: fib(s(s(x))) -> sp(g(x)) r5: g(|0|()) -> pair(s(|0|()),|0|()) r6: g(s(|0|())) -> pair(s(|0|()),s(|0|())) r7: g(s(x)) -> np(g(x)) r8: sp(pair(x,y)) -> +(x,y) r9: np(pair(x,y)) -> pair(+(x,y),x) r10: +(x,|0|()) -> x r11: +(x,s(y)) -> s(+(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = x1 s_A(x1) = x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((0,1),(1,1)) x1 s_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(x,s(y)) -> +#(x,y) and R consists of: r1: fib(|0|()) -> |0|() r2: fib(s(|0|())) -> s(|0|()) r3: fib(s(s(|0|()))) -> s(|0|()) r4: fib(s(s(x))) -> sp(g(x)) r5: g(|0|()) -> pair(s(|0|()),|0|()) r6: g(s(|0|())) -> pair(s(|0|()),s(|0|())) r7: g(s(x)) -> np(g(x)) r8: sp(pair(x,y)) -> +(x,y) r9: np(pair(x,y)) -> pair(+(x,y),x) r10: +(x,|0|()) -> x r11: +(x,s(y)) -> s(+(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,1),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,1),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.