YES We show the termination of the TRS R: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x,y)) -> f(minus(y),minus(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(h(x)) -> minus#(x) p2: minus#(f(x,y)) -> minus#(y) p3: minus#(f(x,y)) -> minus#(x) and R consists of: r1: minus(minus(x)) -> x r2: minus(h(x)) -> h(minus(x)) r3: minus(f(x,y)) -> f(minus(y),minus(x)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(h(x)) -> minus#(x) p2: minus#(f(x,y)) -> minus#(x) p3: minus#(f(x,y)) -> minus#(y) and R consists of: r1: minus(minus(x)) -> x r2: minus(h(x)) -> h(minus(x)) r3: minus(f(x,y)) -> f(minus(y),minus(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1) = ((1,1),(1,1)) x1 h_A(x1) = ((1,1),(1,0)) x1 + (1,1) f_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1) = ((0,1),(1,1)) x1 h_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1) = (0,0) h_A(x1) = (1,1) f_A(x1,x2) = (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.