YES We show the termination of the TRS R: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) din(der(times(X,Y))) -> u31(din(der(X)),X,Y) u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) din(der(der(X))) -> u41(din(der(X)),X) u41(dout(DX),X) -> u42(din(der(DX)),X,DX) u42(dout(DDX),X,DX) -> dout(DDX) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: u21#(dout(DX),X,Y) -> u22#(din(der(Y)),X,Y,DX) p4: u21#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: u31#(dout(DX),X,Y) -> u32#(din(der(Y)),X,Y,DX) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(der(X))) -> u41#(din(der(X)),X) p10: din#(der(der(X))) -> din#(der(X)) p11: u41#(dout(DX),X) -> u42#(din(der(DX)),X,DX) p12: u41#(dout(DX),X) -> din#(der(DX)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p8, p9, p10, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(der(X))) -> u41#(din(der(X)),X) p5: u41#(dout(DX),X) -> din#(der(DX)) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (2,0) der_A(x1) = ((1,0),(1,0)) x1 + (1,1) plus_A(x1,x2) = x1 + (1,0) u21#_A(x1,x2,x3) = (2,0) din_A(x1) = x1 + (0,1) dout_A(x1) = ((1,1),(0,1)) x1 + (1,5) u41#_A(x1,x2) = (2,0) times_A(x1,x2) = ((0,1),(1,1)) x1 + ((0,1),(1,0)) x2 + (2,0) u31#_A(x1,x2,x3) = ((0,1),(0,0)) x1 u22_A(x1,x2,x3,x4) = x4 + (2,5) u32_A(x1,x2,x3,x4) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (0,5) u42_A(x1,x2,x3) = x1 + (1,0) u21_A(x1,x2,x3) = x1 + (1,0) u31_A(x1,x2,x3) = x1 + ((0,1),(0,0)) x2 + (2,0) u41_A(x1,x2) = ((1,1),(0,0)) x1 + (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (0,0) der_A(x1) = x1 + (1,1) plus_A(x1,x2) = (1,0) u21#_A(x1,x2,x3) = (0,0) din_A(x1) = ((1,0),(1,0)) x1 + (1,0) dout_A(x1) = (5,7) u41#_A(x1,x2) = (0,0) times_A(x1,x2) = (1,1) u31#_A(x1,x2,x3) = (1,1) u22_A(x1,x2,x3,x4) = (6,7) u32_A(x1,x2,x3,x4) = (4,3) u42_A(x1,x2,x3) = (0,1) u21_A(x1,x2,x3) = ((0,1),(0,1)) x1 u31_A(x1,x2,x3) = (3,2) u41_A(x1,x2) = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (0,0) der_A(x1) = (1,1) plus_A(x1,x2) = (1,1) u21#_A(x1,x2,x3) = (0,0) din_A(x1) = ((0,0),(1,0)) x1 + (2,0) dout_A(x1) = (1,1) u41#_A(x1,x2) = (0,0) times_A(x1,x2) = (1,1) u31#_A(x1,x2,x3) = (1,1) u22_A(x1,x2,x3,x4) = (2,1) u32_A(x1,x2,x3,x4) = (2,3) u42_A(x1,x2,x3) = (0,1) u21_A(x1,x2,x3) = (3,2) u31_A(x1,x2,x3) = (3,2) u41_A(x1,x2) = (1,1) The next rules are strictly ordered: p7, p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(der(X))) -> u41#(din(der(X)),X) p5: u41#(dout(DX),X) -> din#(der(DX)) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(plus(X,Y))) -> din#(der(X)) p4: din#(der(times(X,Y))) -> din#(der(X)) p5: din#(der(der(X))) -> u41#(din(der(X)),X) p6: u41#(dout(DX),X) -> din#(der(DX)) p7: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (2,0) der_A(x1) = ((0,1),(0,0)) x1 + (0,3) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(0,1)) x2 + (1,4) u21#_A(x1,x2,x3) = ((0,1),(0,0)) x1 din_A(x1) = x1 + (0,1) dout_A(x1) = (1,3) times_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (0,2) u41#_A(x1,x2) = (2,0) u22_A(x1,x2,x3,x4) = x1 + (2,0) u32_A(x1,x2,x3,x4) = ((1,1),(0,0)) x1 + (0,3) u42_A(x1,x2,x3) = (2,3) u21_A(x1,x2,x3) = (3,1) u31_A(x1,x2,x3) = x1 + ((0,1),(0,0)) x3 + (2,0) u41_A(x1,x2) = x1 + (3,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (1,1) der_A(x1) = (1,1) plus_A(x1,x2) = (0,1) u21#_A(x1,x2,x3) = (0,0) din_A(x1) = (0,1) dout_A(x1) = (1,4) times_A(x1,x2) = (1,1) u41#_A(x1,x2) = (1,1) u22_A(x1,x2,x3,x4) = (2,3) u32_A(x1,x2,x3,x4) = (1,3) u42_A(x1,x2,x3) = (1,1) u21_A(x1,x2,x3) = (1,2) u31_A(x1,x2,x3) = (0,1) u41_A(x1,x2) = (0,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (0,1) der_A(x1) = (0,1) plus_A(x1,x2) = (1,1) u21#_A(x1,x2,x3) = (1,0) din_A(x1) = (2,0) dout_A(x1) = (5,3) times_A(x1,x2) = (1,1) u41#_A(x1,x2) = (0,1) u22_A(x1,x2,x3,x4) = (4,2) u32_A(x1,x2,x3,x4) = (0,1) u42_A(x1,x2,x3) = (0,1) u21_A(x1,x2,x3) = (3,1) u31_A(x1,x2,x3) = (1,0) u41_A(x1,x2) = (1,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> din#(der(X)) p2: din#(der(times(X,Y))) -> din#(der(X)) p3: din#(der(der(X))) -> u41#(din(der(X)),X) p4: u41#(dout(DX),X) -> din#(der(DX)) p5: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> din#(der(X)) p2: din#(der(der(X))) -> din#(der(X)) p3: din#(der(der(X))) -> u41#(din(der(X)),X) p4: u41#(dout(DX),X) -> din#(der(DX)) p5: din#(der(times(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (2,0) der_A(x1) = ((0,1),(1,0)) x1 + (1,2) plus_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (0,1) u41#_A(x1,x2) = ((0,1),(0,0)) x1 din_A(x1) = ((1,1),(0,0)) x1 + (0,1) dout_A(x1) = (1,3) times_A(x1,x2) = ((0,1),(1,1)) x1 + ((0,1),(1,0)) x2 + (0,3) u22_A(x1,x2,x3,x4) = x1 + (2,0) u32_A(x1,x2,x3,x4) = x1 + (2,0) u42_A(x1,x2,x3) = x1 + (2,0) u21_A(x1,x2,x3) = ((0,1),(0,1)) x1 + ((0,1),(0,0)) x3 + (2,0) u31_A(x1,x2,x3) = x1 + (2,1) u41_A(x1,x2) = x1 + (2,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (0,0) der_A(x1) = (0,1) plus_A(x1,x2) = ((1,1),(0,0)) x1 + (1,1) u41#_A(x1,x2) = (1,1) din_A(x1) = (1,1) dout_A(x1) = (4,4) times_A(x1,x2) = (1,1) u22_A(x1,x2,x3,x4) = (3,3) u32_A(x1,x2,x3,x4) = (5,3) u42_A(x1,x2,x3) = (5,3) u21_A(x1,x2,x3) = (2,2) u31_A(x1,x2,x3) = (6,2) u41_A(x1,x2) = (2,2) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = (1,1) der_A(x1) = (0,0) plus_A(x1,x2) = (0,1) u41#_A(x1,x2) = (0,0) din_A(x1) = (1,1) dout_A(x1) = (4,4) times_A(x1,x2) = (1,1) u22_A(x1,x2,x3,x4) = (3,3) u32_A(x1,x2,x3,x4) = (0,0) u42_A(x1,x2,x3) = (3,3) u21_A(x1,x2,x3) = (2,2) u31_A(x1,x2,x3) = (2,2) u41_A(x1,x2) = (2,2) The next rules are strictly ordered: p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> din#(der(X)) p2: din#(der(der(X))) -> din#(der(X)) p3: din#(der(times(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> din#(der(X)) p2: din#(der(times(X,Y))) -> din#(der(X)) p3: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = x1 der_A(x1) = ((1,1),(1,0)) x1 + (1,1) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) times_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = ((1,1),(0,1)) x1 der_A(x1) = ((1,0),(1,0)) x1 + (1,1) plus_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,1) times_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: din#_A(x1) = x1 der_A(x1) = ((0,1),(0,1)) x1 + (1,1) plus_A(x1,x2) = x1 + ((0,0),(1,1)) x2 + (1,1) times_A(x1,x2) = x1 + (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.